
ADC0811

ADC0811 8-Bit Serial I/O A/D Converter With 11-Channel Multiplexer

Literature Number: SNAS532A

© 1995 National Semiconductor Corporation TL/H/5587

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage (V_{CC}) 6.5V

voltage	
Inputs and Outputs	$-0.3V$ to $V_{\mbox{CC}}$ $+0.3V$
Input Current Per Pin (Note 3)	$\pm 5 mA$
Total Package Input Current (Note 3)	\pm 20mA
Storage Temperature	-65°C to +150°C
Package Dissipation at $T_A = 25^{\circ}C$	875 mW

Lead Temp. (Soldering, 10 seconds) Dual-In-Line Package (plastic) Dual-In-Line Package (ceramic) Molded Chip Carrier Package	260°C 300°C
Vapor Phase (60 seconds)	215°C
Infrared (15 seconds)	220°C
ESD Susceptibility (Note 11)	2000V

Operating Ratings (Notes 1 & 2)

Supply Voltage (V _{CC})	4.5 V_{DC} to 6.0 V_{DC}
Temperature Range	$T_{MIN} \le T_A \le T_{MAX}$
ADC0811BCN, ADC0811CCN	$0^{\circ}C \le T_{A} \le 70^{\circ}C$
ADC0811BCV	$-40^{\circ}C \le T_{A} \le 85^{\circ}C$
ADC0811CCJ, ADC0811CCV	$-40^{\circ}C \le T_{A} \le 85^{\circ}C$

Electrical Characteristics

The following specifications apply for V_{CC} = 4.75V to 5.25V, V_{REF} = +4.6V to (V_{CC} + 0.1V), $\phi_{2 \text{ CLK}}$ = 2.097 MHz unless otherwise specified. Boldface limits apply from T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25°C.

			ADC0811CCJ	I	ADC0811BCN, ADC0811BC ADC0811CCN, ADC0811CC				
Parameter	Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units	
CONVERTER AND MULTIPLEX	ER CHARACTERI	STICS							
Maximum Total Unadjusted Error ADC0811BCN, ADC0811BCV ADC0811CCN, ADC0811CCV ADC0811CCJ	V _{REF} =5.00 V _{DC} (Note 4)		± 1			± 1/2 ± 1	± ½ ± 1	LSB LSB LSB	
Minimum Reference Input Resistance		8		5	8		5	kΩ	
Maximum Reference Input Resistance		8	11		8	11	11	kΩ	
Maximum Analog Input Range	(Note 5)		V _{CC} +0.05			$V_{CC} + 0.05$	V _{CC} +0.05	V	
Minimum Analog Input Range			GND-0.05			GND-0.05	GND-0.05	V	
On Channel Leakage Current ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV	On Channel = 5V Off Channel = 0V		1000			400	1000	nA	
ADC0811CJ, BJ			1000					nA	
ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV ADC0811BJ, CJ	On Channel = $0V$ Off Channel = $5V$ (Note 9)		- 1000 - 1000			-400	- 1000	nA nA	
	(Note 9)		-1000					ΠA	
Off Channel Leakage Current ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV	On Channel $= 5V$ Off Channel $= 0V$		- 1000			-400	1000	nA	
ADC0811CJ, BJ			- 1000					nA	
ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV	On Channel = $0V$ Off Channel = $5V$		1000			400	1000	nA	
ADC0811BJ, CJ	(Note 9)		1000					nA	
Minimum V _{TEST} Internal Test Voltage	V _{REF} =V _{CC} , CH 11 Selected		125			125	125	(Note 10) Counts	
Maximum V _{TEST} Internal Test Voltage	V _{REF} =V _{CC} , CH 11 Selected		130			130	130	(Note 10) Counts	

otherwise specified. Boldface		iy nom	'M		, all 0		mits	'A -	IJ - 25 C	. (Continued	1)	
				ADC0811CCJ A						ADC0811BCN, ADC0811BCV ADC0811CCN, ADC0811CCV		
Parameter	Conditions			Typical (Note 6)	Liı	ated nit te 7)	Li	esign imit ote 8)	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8	
DIGITAL AND DC CHARACTERI	STICS											
V _{IN(1)} , Logical "1" Input Voltage (Min)	V _{CC} =5.2	25V			2	.0				2.0	2.0	V
V _{IN(0)} , Logical "0" Input Voltage (Max)	V _{CC} =4.7	75V			0	.8				0.8	0.8	V
I _{IN(1)} , Logical "1" Input Current (Max)	V _{IN} =5.0	V		0.005	2	.5			0.005	2.5	2.5	μΑ
I _{IN(0)} , Logical "0" Input Current (Max)	V _{IN} =0V			-0.005	-1	2.5			-0.005	2.5	-2.5	μΑ
V _{OUT(1)} , Logical "1" Output Voltage (Min)	$V_{CC} = 4.7$ $I_{OUT} = -$ $I_{OUT} = -$	360 µA				.4 .5				2.4 4.5	2.4 4.5	v v
V _{OUT(0)} , Logical ''0'' Output Voltage (Max)	V _{CC} =5.2				0	.4				0.4	0.4	V
I _{OUT} , TRI-STATE Output Current (Max)	V _{OUT} =0 V _{OUT} =5			-0.01 0.01		3 3			-0.01 0.01	-3 3	-3 3	μΑ μΑ
I _{SOURCE} , Output Source Current (Min)	V _{OUT} =0	V		- 12	-0	ò.5			-14	-6.5	-6.5	mA
I _{SINK} , Output Sink Current (Min)	V _{OUT} =V	′cc		18	8	.0			16	8.0	8.0	mA
I _{CC} , Supply Current (Max)	$\overline{\text{CS}} = 1, V$	REF Ope	ən	1	2.5				1	2.5	2.5	mA
I _{REF} (Max)	V _{REF} =5	V		0.7		1			0.7	1	1	mA
Parameter				Condition	s	Typ (Not		Teste Lim (Note	it	Design Limit (Note 8)		Units
$\phi_{2 \text{ CLK}}, \phi_{2} \text{ Clock Frequency}$		MIN MAX				0.7 3.		2.0		1.0 2.1		MHz
S _{CLK} , Serial Data Clock		MIN	₹			0.				5.0		
Frequency		MAX				70	0	525	;	525		KHz
T _C , Conversion Process Time		MIN	Not Including MUX Addressing and					·	48			
МАХ		MAX	An	alog Input mpling Time		64	4			64		
ACC, Access Time Delay From CS MIN		MIN	-							1		φ ₂ cycle
Falling Edge to DO Data Valid MAX										3		
t _{SET-UP} , Minimum Set-up Time of CS Falling Edge to S _{CLK} Rising Edge									4/	¢2CLK+ <mark>2</mark>	1 S _{CLK}	sec
$t_{H\overline{CS}}, \overline{CS}$ Hold Time After the Falling Edge of S _{CLK}										0		ns
t CS , Total CS Low Time MIN		MIN							ts	et-up+8/S	CLK	sec
		MAX								min)+48/		sec
t _{HDI} , Minimum DI Hold Time from						0				0		
t _{HDI} , Minimum DI Hold Time from S _{CLK} Rising Edge						0				U		ns

Г

		T_{MIN} to T_{MAX} ; all other limits T_A	- IJ-	25.0. (001	lunueu)	
Parameter		Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Unite
AC CHARACTERISTICS (Continued)	•					
t _{SDI} , Minimum DI Set-up Time to S _{CLK} Rising Edge			200		400	ns
t _{DDO} , Maximum Delay From S _{CLK} Falling Edge to DO Data Valid	$R_L = 30k,$ $C_L = 100 \text{ pF}$		180	400	400	ns
t _{TRI} , Maximum DO Hold Time, (CS Rising edge to DO TRI-STATE)	R _L =3k, C _L =100 pF		90	150	150	ns
t _{CA} , Analog Sampling Time	$\frac{\text{After Addres}}{\text{CS}} = \text{Low}$	s Is Latched			4/S _{CLK} +1 μ s	sec
t _{RDO} , Maximum DO	$R_L = 30 k\Omega$,	"TRI-STATE" to "HIGH" State	75	150	150	ns
Rise Time	C _L =100 pf	"LOW" to "HIGH" State	150	300	300	
F _{DO} , Maximum DO	$R_L = 30 k\Omega$,	"TRI-STATE" to "LOW" State	75	150	150	ns
Fall Time	C _L =100 pf	"HIGH" to "LOW" State	150	300	300	
C _{IN} , Maximum Input	Analog Input	s, ANO-AN10 and V _{REF}	11		55	pF
Capacitance	All Others		5		15	

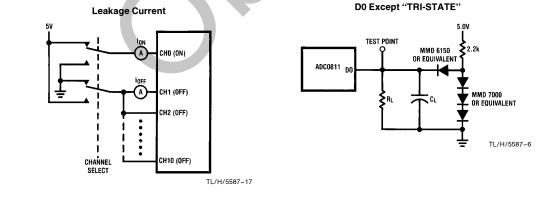
Note 3: Under over voltage conditions (V_{IN} <0V and V_{IN} > V_{CC}) the maximum input current at any one pin is ±5 mA. If the voltage at more than one pin exceeds V_{CC} + .3V the total package current must be limited to 20 mA. For example the maximum number of pins that can be over driven at the maximum current level of ±5 mA is four.

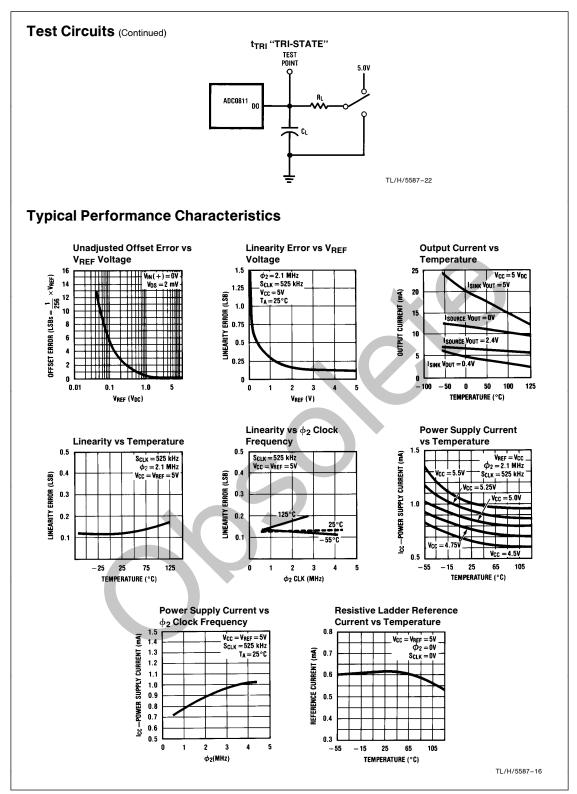
Note 4: Total unadjusted error includes offset, full-scale, linearity, multiplexer, and hold step errors.

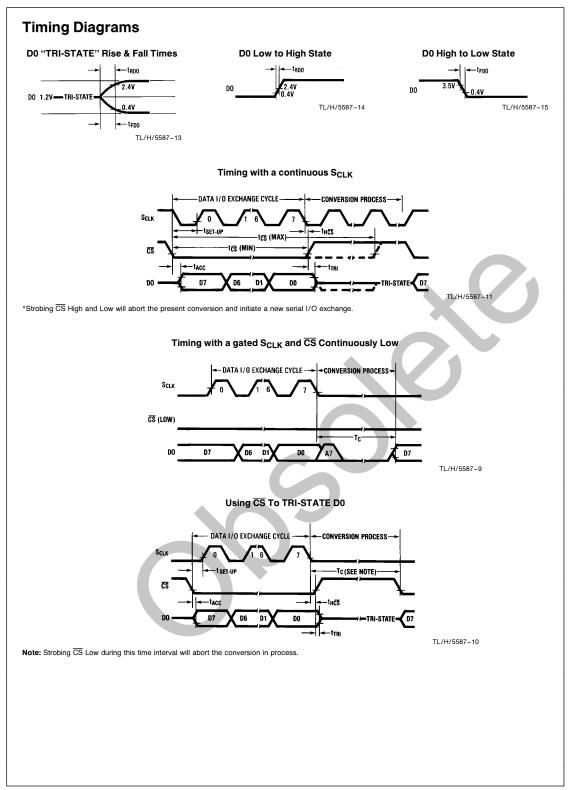
Note 5: Two on-chip diodes are tied to each analog input, which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. Be careful during testing at low V_{CC} levels (4.5V), as high level analog inputs (5V) can cause this input diode to conduct, especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 50 mV, the output code will be correct. To achieve an absolute 0 V_{DC} to 5 V_{DC} input voltage range will therefore require a minimum supply voltage of 4.950 V_{DC} over temperature variations, initial tolerance and loading.

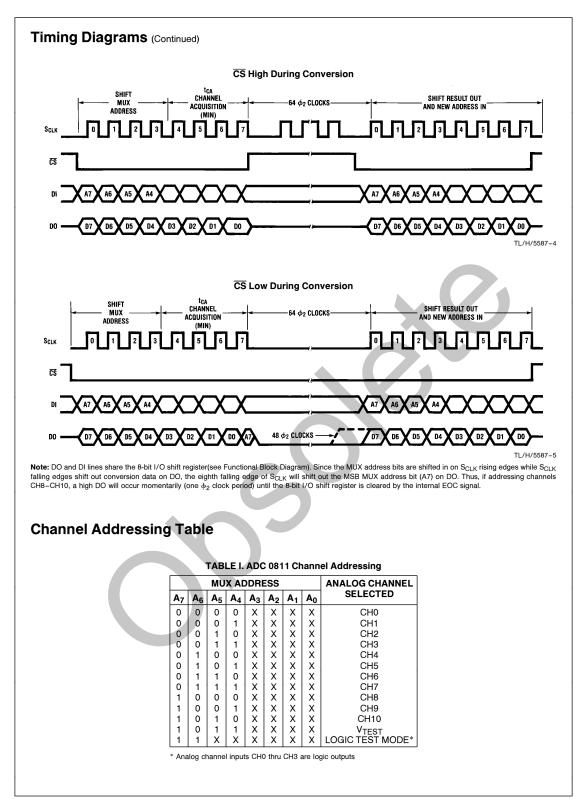
Note 6: Typicals are at 25°C and represent most likely parametric norm.

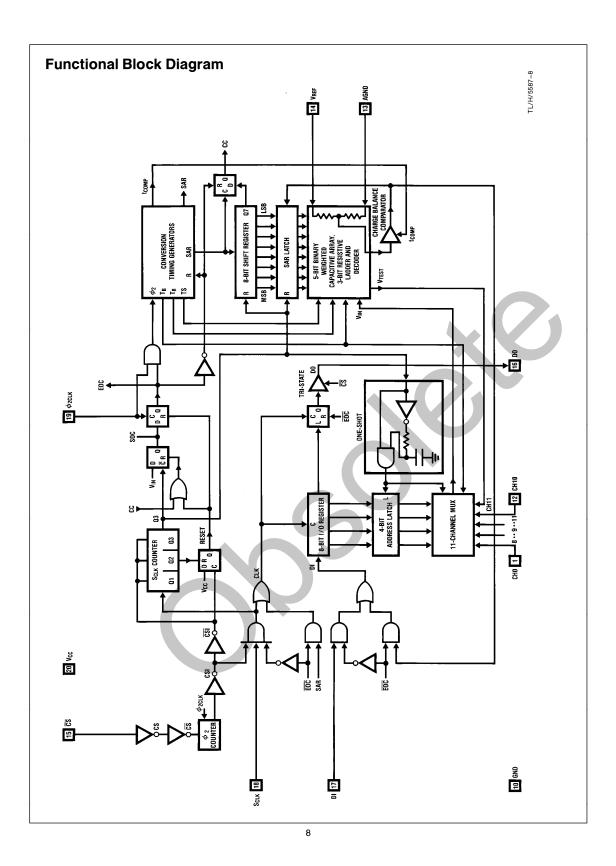
Note 7: Guaranteed and 100% production tested under worst case condition.


Note 8: Guaranteed, but not 100% production tested. These limits are not used to calculate outgoing quality levels.


Note 9: Channel leakage current is measured after the channel selection.


Note 10: 1 count = $V_{\text{REF}}/256$.


Note 11: Human body model, 100 pF discharged through a 1.5 k Ω resistor.


Test Circuits

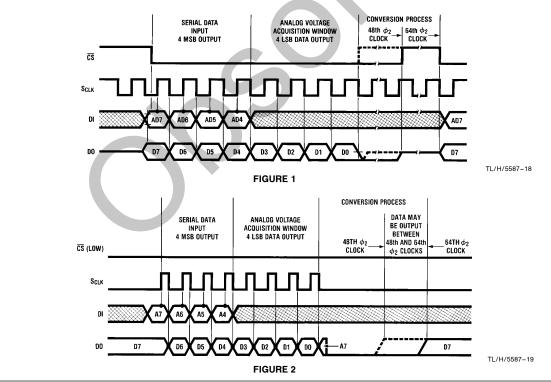
Functional Description

1.0 DIGITAL INTERFACE

The ADC0811 uses five input/output pins to implement the serial interface. Taking chip select (\overline{CS}) low enables the I/O data lines (DO and DI) and the serial clock input (S_{CLK}). The result of the last conversion is transmitted by the A/D on the DO line, while simultaneously the DI line receives the address data that selects the mux channel for the next conversion. The mux address is shifted in on the rising edge of S_{CLK} and the conversion data is shifted out on the falling edge. It takes eight S_{CLK} cycles to complete the serial I/O. A second clock (ϕ_2) controls the SAR during the conversion process and must be continuously enabled.

1.1 CONTINUOUS SCLK

With a continuous S_{CLK} input \overline{CS} must be used to synchronize the serial data exchange (see *Figure 1*). The ADC0811 recognizes a valid \overline{CS} one to three ϕ_2 clock periods after the actual falling edge of \overline{CS} . This is implemented to ensure noise immunity of the \overline{CS} signal. Any spikes on \overline{CS} less than one ϕ_2 clock period will be ignored. \overline{CS} must remain low during the complete I/O exchange which takes eight S_{CLK} cycles. Although \overline{CS} is not immediately acknowledged for the purpose of starting a new conversion, the falling edge of \overline{CS} immediately enables DO to output the MSB (D7) of the previous conversion.


The first S_{CLK} rising edge will be acknowledged after a setup time (t_{set-up}) has elapsed from the falling edge of \overline{CS} . This and the following seven S_{CLK} rising edges will shift in the channel address for the analog multiplexer. Since there are 12 channels only four address bits are utilized. The first four S_{CLK} cycles clock in the mux address, during the next four S_{CLK} cycles the analog input is selected and sampled. During this mux address/sample cycle, data from the last conversion is also clocked out on DO. Since D7 was clocked out on the falling edge of \overline{CS} only data bits D6–D0 remain to be received. The following seven falling edges of S_{CLK} shift out this data on DO.

The 8th S_{CLK} falling edge initiates the beginning of the A/D's actual conversion process which takes between 48 to 64 ϕ_2 cycles (T_C). During this time \overline{CS} can go high to TRI-STATE DO and disable the S_{CLK} input or it can remain low. If \overline{CS} is held low a new I/O exchange will not start until the conversion sequence has been completed, however once the conversion ends serial I/O will immediately begin. Since there is an ambiguity in the conversion time (T_C) synchronizing the data exchange is impossible. Therefore \overline{CS} should go high before the 48th ϕ_2 clock has elasped and return low after the 64th ϕ_2 to synchronize serial communication.

A conversion or I/O operation can be aborted at any time by strobing \overline{CS} . If \overline{CS} is high or low less than one ϕ_2 clock it will be ignored by the A/D. If the \overline{CS} is strobed high or low between 1 to 3 ϕ_2 clocks the A/D may or may not respond. Therefore \overline{CS} must be strobed high or low greater than 3 ϕ_2 clocks to ensure recognition. If a conversion or I/O exchange is aborted while in process the consequent data output will be erroneous until a complete conversion sequence has been implemented.

1.2 DISCONTINUOUS SCLK

Another way to accomplish synchronous serial communication is to tie \overline{CS} low continuously and disable S_{CLK} after its 8th falling edge (see *Figure 2*). S_{CLK} must remain low for

Functional Description (Continued)

at least 64 φ_2 clocks to insure that the A/D has completed its conversion. If S_{CLK} is enabled sooner, synchronizing to the data output on DO is not possible since an end of conversion signal from the A/D is not available and the actual conversion time is not known. With \overline{CS} low during the conversion time (64 φ_2 max) DO will go low after the eighth falling edge of S_{CLK} and remain low until the conversion is completed. Once the conversion is through DO will transmit the MSB. The rest of the data will be shifted out once S_{CLK} is enabled as discussed previously.

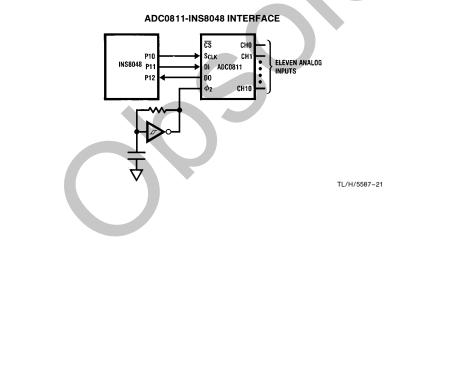
If \overline{CS} goes high during the conversion sequence DO is tristated, and the result is not affected so long as \overline{CS} remains high until the end of the conversion.

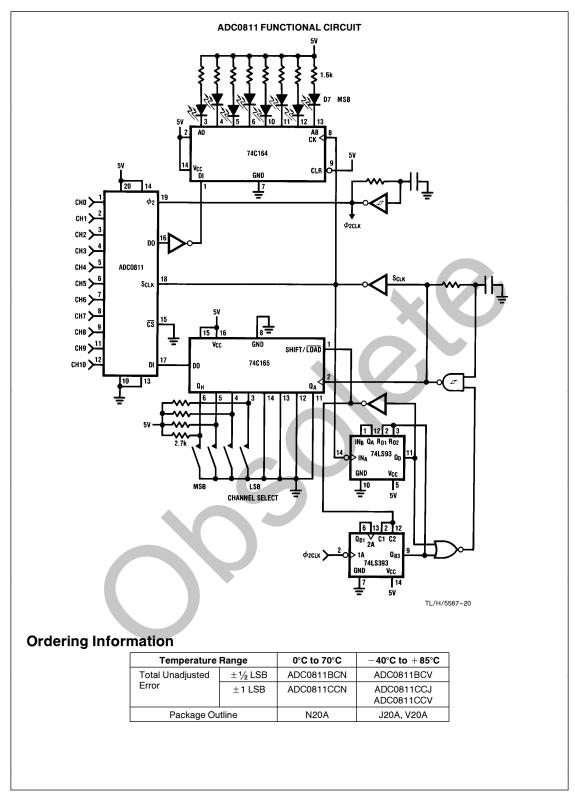
1.2 MULTIPLEXER ADDRESSING

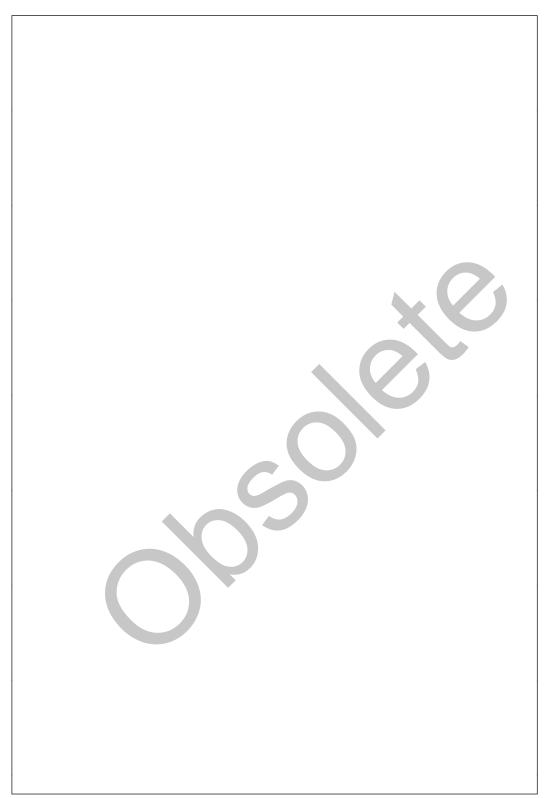
The four bit mux address is shifted, MSB first, into DI. Input data corresponds to the channel selected as shown in table 1. Care should be taken not to send an address greater than or equal to twelve (11XX) as this puts the A/D in a digital testing mode. In this mode the analog inputs CH0 thru CH3 become digital outputs, for our use in production testing.

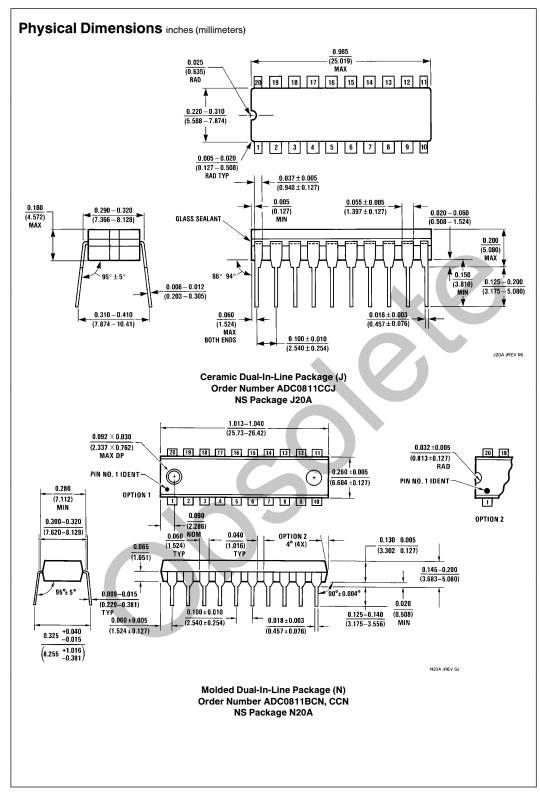
2.0 ANALOG INPUT

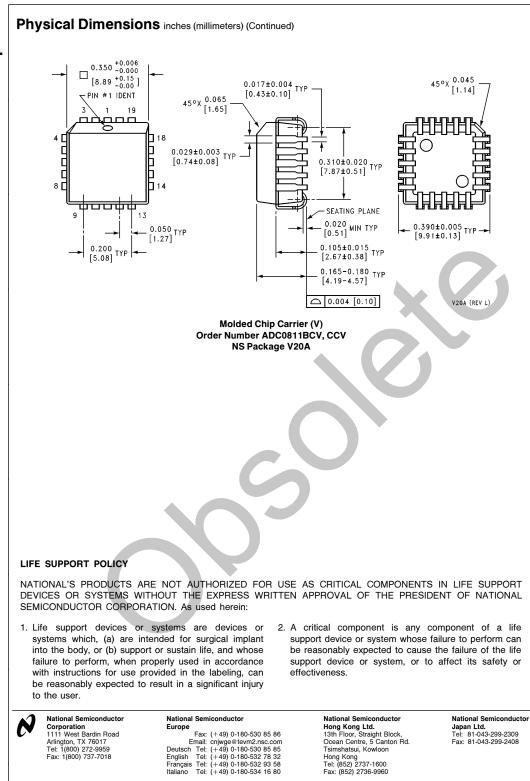
2.1 THE INPUT SAMPLE AND HOLD


The ADC0811's sample/hold capacitor is implemented in its capacitive ladder structure. After the channel address is received, the ladder is switched to sample the proper analog input. This sampling mode is maintained for 1 μ sec after the


eighth S_{CLK} falling edge. The hold mode is initiated with the start of the conversion process. An acquisition window of $4t_{S_{CLK}}+1~\mu$ scc is therefore available to allow the ladder capacitance to settle to the analog input voltage. Any change in the analog voltage before or after the acquisition window will not effect the A/D conversion result.


In the most simple case, the ladder's acquisition time is determined by the R_{on} (3K) of the multiplexer switches and the total ladder capacitance (90pf). These values yield an acquisition time of about 2 μ sec for a full scale reading. Therefore the analog input must be stable for at least 2 μ sec before and 1 μ sec after the eighth S_{CLK} falling edge to ensure a proper conversion. External input source resistance and capacitance will lengthen the acquisition time and should be accounted for.


Other conventional sample and hold error specifications are included in the error and timing specs of the A/D. The hold step and gain error sample/hold specs are taken into account in the ADC0811's total unadjusted error, while the hold settling time is included in the A/D's max conversion time of 64 ϕ_2 clock periods. The hold droop rate can be thought of as being zero since an unlimited amount of time can pass between a conversion and the reading of data. However, once the data is read it is lost and another conversion is started.



National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated