ADC08231, ADC08234, ADC08238

ADC08231/ADC08234/ADC08238 8-Bit 2 Mus Serial I/O A/D Converters with MUX,

Reference, and Track/Hold

Literature Number: SNAS067A

ADC08231/ADC08234/ADC08238 8-Bit 2 μ s Serial I/O A/D Converters with MUX, Reference, and Track/Hold

General Description

The ADC08231/ADC08234/ADC08238 are 8-bit successive approximation A/D converters with serial I/O and configurable input multiplexers with up to 8 channels. The serial I/O is configured to comply with the NSC MICROWIRETM serial data exchange standard for easy interface to the COPSTM family of controllers, and can easily interface with standard shift registers or microprocessors.

Designed for high-speed/low-power applications, the devices are capable of a fast 2 μs conversion when used with a 4 MHz clock.

All three devices provide a 2.5V band-gap derived reference with guaranteed performance over temperature.

A track/hold function allows the analog voltage at the positive input to vary during the actual A/D conversion.

The analog inputs can be configured to operate in various combinations of single-ended, differential, or pseudo-differential modes. In addition, input voltage spans as small as 1V can be accommodated.

Applications

- High-speed data acquisition
- Digitizing automotive sensors
- Process control/monitoring
- Remote sensing in noisy environments

- Serial digital data link requires few I/O pins
- Analog input track/hold function
- 4- or 8-channel input multiplexer options with address logic
- On-chip 2.5V band-gap reference (±2% over temperature guaranteed)
- No zero or full scale adjustment required
- TTL/CMOS input/output compatible
- 0V to 5V analog input range with single 5V power supply

Pin compatible with Industry-Standards ADC0831/4/8

Key Specifications

- Resolution
- Conversion time (f_C = 4 MHz)
- Power dissipation
- Single supply
- Total unadjusted error
- Linearity Error (V_{REF} = 2.5V)
- No missing codes (over temperature)
- On-board Reference +2.5V ±1.5% (Max)

© 1995 National Semiconductor Corporation TL/H/11015

RRD-B30M75/Printed in U. S. A.

with MUX, ADC08231/ADC08234/ADC08238 8-Bit 2 Reference, and Track/Hold μs Serial I/O A/D Converters

8 Bits

2 μs (Max)

 $\pm 1/_2$ LSB

20 mW (Max)

5 V_{DC} (±5%)

 $\pm \frac{1}{2}$ LSB and ± 1 LSB

December 1994

please co	Ite Maximum Ratings /Aerospace specified devices ontact the National Semicono tributors for availability and spe	are required, ductor Sales	Operating Ra Temperature Range ADC08231BIN, ADC08 ADC08234BIN, ADC08	T _{MIN} 8231CIN, –40°C ±	$T_{A} \leq T_{A} \leq T_{M,A}$ $\leq T_{A} \leq +85^{\circ}$
Supply Volt	tage (V _{CC})	6.5V	ADC08238BIN, ADC08		
Voltage at I	Inputs and Outputs -0.3V	to V_{CC} + 0.3V	ADC08231BIWM, ADC	,	
Input Curre	nt at Any Pin (Note 4)	$\pm 5 \text{ mA}$	ADC08234BIWM, ADC		
Package In	put Current (Note 4)	\pm 20 mA	ADC08234CIWM, ADC		
	ipation at $T_A = 25^{\circ}C$ (Note 5)	800 mW	ADC08234CIMF		
ESD Susce	ptibility (Note 6)	1500V	Supply Voltage (V _{CC})	4.5	V _{DC} to 6.3 V _I
	ge (10 sec.)	260°C			00 1
	and SO Package (Note 7): Phase (60 sec.)	215°C			
•	d (15 sec.)	220°C			
Storage Te		5°C to +150°C			
The followi	cal Characteristics ng specifications apply for $V_{CC} =$ Boldface limits apply for $T_A = 1$	+ 5 V_{DC} , $V_{REF} = +$ $T_J = T_{MIN}$ to T_{MAX}	; all other limits $T_A = T_J$	= 25°C.	nless otherwi
Symbol	Parameter	Conditions	ADC0 ADC082 CIN	C08231, 08234 and 238 with BIN, I, BIWM, CIMF Suffixes	Units (Limits
			Typical (Note 8)	Limits (Note 9)	
NVERTER	AND MULTIPLEXER CHARACTI	ERISTICS			
	Linearity Error	$V_{REF} = +2.5 \mathrm{V}$	/DC		LSB (ma
	BIN, BIWM CIN, CIMF, CIWM			± ½ ± 1	LSB (ma
		V _{REF} = +2.5 V	Ирс		
	CIN, CIMF, CIWM Gain Error BIN, BIWM	$V_{REF} = +2.5 V_{REF} = +2.5 V_{REF}$		±1 ±1	LSB (ma
	CIN, CIMF, CIWM Gain Error BIN, BIWM CIN, CIMF, CIWM Zero Error BIN, BIWM			±1 ±1 ±1 ±1	LSB (ma LSB (ma LSB (ma LSB (ma LSB (ma LSB (ma
	CIN, CIMF, CIWM Gain Error BIN, BIWM CIN, CIMF, CIWM Zero Error BIN, BIWM CIN, CIMF, CIWM Total Unadjusted Error BIN, BIWM	$V_{\text{REF}} = +2.5 \text{ V}$ $V_{\text{REF}} = +5 \text{ V}_{\text{D}}$	/DC C	±1 ±1 ±1 ±1 ±1 ±1	LSB (ma LSB (ma LSB (ma LSB (ma LSB (ma LSB (ma LSB (ma
R _{REF}	CIN, CIMF, CIWM Gain Error BIN, BIWM CIN, CIMF, CIWM Zero Error BIN, BIWM CIN, CIMF, CIWM Total Unadjusted Error BIN, BIWM CIN, CIMF, CIWM	$V_{REF} = +2.5 V_{D}$ $V_{REF} = +5 V_{D}$ (Note 10)	/DC C	±1 ±1 ±1 ±1 ±1 ±1 ±1	LSB (ma LSB (ma LSB (ma LSB (ma

Symbol	Parameter	Conditions	ADC082 ADC0823 ADC08238 w CIN, BIV CIWM, or CIM	Units (Limits)		
			Typical (Note 8)	Limits (Note 9)		
ONVERTER	AND MULTIPLEXER CHARACT	ERISTICS (Continued)			1	
	DC Common-Mode Error	$V_{REF} = +2.5 V_{DC}$		± 1/2	LSB (max	
	Power Supply Sensitivity	$V_{CC} = +5V \pm 5\%,$ $V_{REF} = +2.5 V_{DC}$		± 1⁄4	LSB (max	
	On Channel Leakage Current (Note 13)	On Channel = 5V, Off Channel = 0V		0.2 1	μA (max	
		On Channel = 0V, Off Channel = 5V		-0.2 - 1	μA (max	
	Off Channel Leakage Current (Note 13)	$\begin{array}{l} \text{On Channel} = 5\text{V},\\ \text{Off Channel} = 0\text{V} \end{array}$		-0.2 - 1	μA (max	
		On Channel = 0V, Off Channel = 5V		0.2 1	μA (max	
YNAMIC CH	ARACTERISTICS (see Typical C	onverter Performance Character	istics)			
$\frac{S}{N+D}$	Signal-to- (Noise + Distortion) Ratio	$V_{REF} = +5V$ Sample Rate = 286 kHz $V_{IN} = +5 V_{p-p}$		9		
		f _{IN} = 10 kHz	48.35		dB	
		f _{IN} = 50 kHz	48.00		dB	
		f _{IN} = 100 kHz	47.40		dB	
IGITAL AND	DC CHARACTERISTICS					
V _{IN(1)}	Logical "1" Input Voltage	$V_{\rm CC} = 5.25 V$		2.0	V (min)	
V _{IN(0)}	Logical "0" Input Voltage	$V_{\rm CC} = 4.75 V$		0.8	V (max)	
I _{IN(1)}	Logical "1" Input Current	$V_{IN} = 5.0V$		1	μA (max	
I _{IN(0)}	Logical "0" Input Current	$V_{IN} = 0V$		- 1	μA (max	
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75V:$ $I_{OUT} = -360 \ \mu A$ $I_{OUT} = -10 \ \mu A$		2.4 4.5	V (min) V (min)	
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75V$ $I_{OUT} = 1.6 \text{ mA}$		0.4	V (max)	
IOUT	TRI-STATE® Output Current	$V_{OUT} = 0V$ $V_{OUT} = 5V$		- 3.0 3.0	μΑ (max μΑ (max	
ISOURCE	Output Source Current	$V_{OUT} = 0V$		-6.5	mA (min	
ISINK	Output Sink Current	$V_{OUT} = V_{CC}$		8.0	mA (min	
Icc	Supply Current ADC08234, ADC08238 ADC08231 (Note 16)	CS = HIGH		3.0 6.0	mA (max mA (max	

Г

ACTERISTICS Output Voltage		Typical (Note 8)	Limits (Note 9)	
Output Voltage				
	BIN, BIJ, BIWM	2.5 ±2%	2.5 ±1.5%	V
	CIN, CIJ, CIWM, CMJ	2.5 ±3.5%	2.5 ±3.0%	
Temperature Coefficient		40		ppm/°C
Load Regulation (Note 17)	$\begin{array}{l} \mbox{Sourcing} \\ \mbox{(}0 \leq I_L \leq +4 \mbox{ mA)} \\ \mbox{ADC08234,} \\ \mbox{ADC08238} \end{array}$	0.003	0.1	
	Sourcing ($0 \le I_L \le +2 \text{ mA}$) ADC08231	0.003	0.1	%/mA
		0.2	0.5	(max)
	Sinking ($-1 \le I_L \le 0 \text{ mA}$) ADC08231	0.2	0.5	
Line Regulation	$4.75V \le V_{CC} \le 5.25V$	0.5	6	mV (max)
Short Circuit Current	V _{REF} = 0V ADC08234, ADC08238	8	25	mA (max)
	V _{REF} = 0V ADC08231	8	25	(indiv)
Start-Up Time	$V_{CC}: 0V \rightarrow 5V$ $C_{L} = 100 \ \mu F$	20		ms
Long Term Stability		200		ppm/1 k⊦
	Load Regulation (Note 17) Line Regulation Short Circuit Current Start-Up Time	$\begin{tabular}{ c c c c } \hline CIWM, CMJ \\ \hline Temperature Coefficient \\ \hline Load Regulation (Note 17) & Sourcing (0 \le I_L \le +4 mA) \\ ADC08234, \\ ADC08238 \\ \hline Sourcing (0 \le I_L \le +2 mA) \\ ADC08231 \\ \hline Sinking (-1 \le I_L \le 0 mA) \\ ADC08234, \\ ADC08234, \\ ADC08238 \\ \hline Sinking (-1 \le I_L \le 0 mA) \\ ADC08231 \\ \hline Sinking (-1 \le I_L \le 0 mA) \\ ADC08231 \\ \hline Sinking (-1 \le I_L \le 0 mA) \\ ADC08231 \\ \hline Sinking (-1 \le I_L \le 0 mA) \\ ADC08234, \\ ADC08231 \\ \hline Sinking (-1 \le I_L \le 0 mA) \\ \hline Sinking (-1 \le I_L \le 0 mA) \\ \hline Sinking $	$\begin{tabular}{ c c c c c } \hline CIWM, CMJ & \pm 3.5\% \\ \hline \mbox{Temperature Coefficient} & 40 \\ \hline \mbox{Load Regulation} \\ (Note 17) & Sourcing \\ (0 \le l_L \le + 4 mA) \\ ADC08234, & 0.003 \\ \hline \mbox{Sourcing} \\ (0 \le l_L \le + 2 mA) \\ ADC08231 & 0.003 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08234, & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08238 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08231 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08238 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08238 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08238 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08238 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08238 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08238 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08231 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08231 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08231 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08231 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08231 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08231 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08231 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08231 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08231 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ ADC08231 & 0.2 \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ \hline \mbox{Sinking} \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ \hline \mbox{Sinking} \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ \hline \mbox{Sinking} \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ \hline \mbox{Sinking} \\ \hline \mbox{Sinking} \\ (-1 \le l_L \le 0 mA) \\ \hline \mbox{Sinking} \\ \hline \\mbox{Sinking} \\ \hline \mbox{Sinking} \\ $	$\begin{tabular}{ c c c c c c } \hline CIWM, CMJ & \pm 3.5\% & 2.5 \pm 3.0\% \\ \hline $2.5 \pm 3.0\%$ & $$2.5 \pm 3.0\%$ & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Electrical Characteristics (Continued)

The following specifications apply for $V_{CC} = +5 V_{DC}$, $V_{REF} = +2.5 V_{DC}$ and $t_r = t_f = 20$ ns unless otherwise specified. Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C$.

Symbol	Parameter	Conditions	Typical (Note 8)	Limits (Note 9)	Units (Limits)	
fCLK	Clock Frequency		10	4	kHz (min) MHz (max)	
	Clock Duty Cycle (Note 14)			40 60	% (min) % (max)	
т _с	Conversion Time (Not Including MUX Addressing Time)	f _{CLK} = 4 MHz		8 2	1/f _{CLK} (max) μs (max)	
t _{CA}	Acquisition Time			1½	1/f _{CLK} (max)	
t SELECT	CLK High while \overline{CS} is High		50		ns	
tSET-UP	CS Falling Edge or Data Input Valid to CLK Rising Edge			25	ns (min)	
tHOLD	Data Input Valid after CLK Rising Edge			20	ns (min)	
t _{pd1} , t _{pd0}	CLK Falling Edge to Output Data Valid (Note 15)	C _L = 100 pF: Data MSB First Data LSB First		250 200	ns (max) ns (max)	
t _{1H} , t _{0H}	TRI-STATE Delay from Rising Edge of \overline{CS} to Data Output and SARS Hi-Z	$C_L = 10 \text{ pF}, R_L = 10 \text{ k}\Omega$ (see TRI-STATE Test Circuits)	50		ns	
		$C_L = 100 \text{ pF}, R_L = 2 \text{ k}\Omega$		180	ns (max)	
CIN	Capacitance of Logic Inputs		5		pF	
C _{OUT}	Capacitance of Logic Outputs		5		pF	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.

Note 2: Operating Ratings indicate conditions for which the device is functional. These ratings do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 3: All voltages are measured with respect to AGND = DGND = 0 V_{DC} , unless otherwise specified.

Note 4: When the input voltage (V_{IN}) at any pin exceeds the power supplies ($V_{IN} < (AGND \text{ or DGND})$ or $V_{IN} > AV_{CC}$), the current at that pin should be limited to 5 mA. The 20 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 5 mA to four pins.

Note 5: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J_{MAX}}$, θ_{JA} and the ambient temperature, T_A . The maximum allowable power dissipation at any temperature is $P_D = (T_{J_{MAX}} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For devices with suffixes BIN, CIN, BIJ, CIJ, BIWM, and CIWM $T_{J_{MAX}} = 125^{\circ}$ C. For devices with suffix CMJ, $T_{J_{MAX}} = 150^{\circ}$ C. The typical thermal resistances (θ_{JA}) of these parts when board mounted follow: ADC08231 with BIN and CIN suffixes 120°C/W, ADC08234 with BIN and CIN suffixes 80°C/W, ADC08231 with BIN and CIN suffixes 140°C/W, ADC08234 with BIN and CIN suffixes 80°C/W, ADC08231 with BINM and CIWM suffixes 140°C/W, ADC08238 with BINM and CIWM suffixes 91°C/W, ADC08238 with BINM and CINM suffixes 91°C/W, ADC08238 with BINM and CIMM suffixes 91°C/W, ADC08238 w

Note 6: Human body model, 100 pF capacitor discharged through a 1.5 k Ω resistor.

Note 7: See AN450 "Surface Mounting Methods and Their Effect on Product Reliability" or Linear Data Book section "Surface Mount" for other methods of soldering surface mount devices.

Note 8: Typicals are at $T_{\rm J}=\,25^{\circ}\text{C}$ and represent the most likely parametric norm

Note 9: Guaranteed to National's AOQL (Average Outgoing Quality Level).

Note 10: Total unadjusted error includes zero, full-scale, linearity, and multiplexer error. Total unadjusted error with V_{REF} = +5V only applies to the ADC08234 and ADC08238. See Note 16.

Note 11: Cannot be tested for the ADC08231.

Note 12: For $V_{IN(-)} \ge V_{IN(+)}$ the digital code will be 0000 0000. Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. During testing at low V_{CC} levels (e.g., 4.5V), high level analog input (e.g., 5V) can cause an input diode to conduct, especially at elevated temperatures. This will cause errors for analog inputs near full-scale. The specification allows 50 mV forward bias of either diode; this means that as long as the analog V_{IN} does not exceed the supply voltage by more than 50 mV, the output code will be correct. Exceeding this range on an unselected channel will corrupt the reading of a selected channel. Achievement of an absolute 0 V_{DC} to 5 V_{DC} input voltage range will therefore require a minimum supply voltage of 4.950 V_{DC} over temperature variations, initial tolerance and loading.

Note 13: Channel leakage current is measured after a single-ended channel is selected and the clock is turned off. For off channel leakage current the following two cases are considered: one, with the selected channel tied high (5 V_{DC}) and the remaining off channels tied low (0 V_{DC}), total current flow through the off channels is measured; two, with the selected channel tied low and the off channels tied high, total current flow through the off channels is measured. The two cases considered for determining on channel is again measured.

Note 14: A 40% to 60% duty cycle range insures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits the minimum time the clock is high or low must be at least 120 ns. The maximum time the clock can be high or low is 100 μ s.

Note 15: Since data, MSB first, is the output of the comparator used in the successive approximation loop, an additional delay is built in (see Block Diagram) to allow for comparator response time.

Note 16: For the ADC08231 V_{REF}IN is internally tied to the on chip 2.5V band-gap reference output; therefore, the supply current is larger because it includes the reference current (700 μA typical, 2 mA maximum).

Note 17: Load regulation test conditions and specifications for the ADC08231 differ from those of the ADC08234 and ADC08238 because the ADC08231 has the on-board reference as a permanent load.

Functional Description

1.0 MULTIPLEXER ADDRESSING

The design of these converters utilizes a comparator structure with built-in sample-and-hold which provides for a differential analog input to be converted by a successiveapproximation routine.

The actual voltage converted is always the difference between an assigned "+" input terminal and a "-" input terminal. The polarity of each input terminal of the pair indicates which line the converter expects to be the most positive. If the assigned "+" input voltage is less than the "-" input voltage the converter responds with an all zeros output code.

A unique input multiplexing scheme has been utilized to provide multiple analog channels with software-configurable single-ended, differential, or pseudo-differential (which will convert the difference between the voltage at any analog input and a common terminal) operation. The analog signal conditioning required in transducer-based data acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground referenced inputs and true differential inputs as well as signals with some arbitrary reference voltage.

A particular input configuration is assigned during the MUX addressing sequence, prior to the start of a conversion. The MUX address selects which of the analog inputs are to be enabled and whether this input is single-ended or differential. Differential inputs are restricted to adjacent channel pairs. For example, channel 0 and channel 1 may be selected as a differential pair but channel 0 or 1 cannot act

Single-Ended MUX Mede

differentially with any other channel. In addition to selecting differential mode the polarity may also be selected. Channel 0 may be selected as the positive input and channel 1 as the negative input or vice versa. This programmability is best illustrated by the MUX addressing codes shown in the following tables for the various product options.

The MUX address is shifted into the converter via the DI line. Because the ADC08231 contains only one differential input channel with a fixed polarity assignment, it does not require addressing.

The common input line (COM) on the ADC08238 can be used as a pseudo-differential input. In this mode the voltage on this pin is treated as the "–" input for any of the other input channels. This voltage does not have to be analog ground; it can be any reference potential which is common to all of the inputs. This feature is most useful in single-sup-ply applications where the analog circuitry may be biased up to a potential other than ground and the output signals are all referred to this potential.

TABLE I. Multiplexer/Package Options	
--------------------------------------	--

Part	Number of Ar	Number of				
Number	Single-Ended	Differential	Package Pins			
ADC08231	1	1	8			
ADC08234	4	2	14			
ADC08238	8	4	20			

TABLE II. MUX Addressing: ADC08238

MUX Address					Analog Single-Ended Channel #										
START	SGL/	ODD/	SEL	SELECT		SELECT		0 1	2	3	4	5	6	7	сом
JIANI	DIF	SIGN	1	0				3	-	J		'			
1	1	0	0	0	+								_		
1	1	0	0	1			+						-		
1	1	0	1	0					+				-		
1	1	0	1	1							+		-		
1	1	1	0	0		+							-		
1	1	1	0	1				+					_		
1	1	1	1	0						+			-		
1	1	1	1	1								+	-		

MUX Address Analog Differential Channel-Pair # START SGL/ DIF ODD/ SIGN SELECT 0 1 2 3 4 5 6 7 1 0 0 0 1 2 3 4 5 6 7 1 0 0 0 + - 7 1 0 0 0 + - <td< th=""><th>Differentia</th><th>I MUX Mod</th><th>le</th><th>TABLE I</th><th>l. MUX Ac</th><th>dressi</th><th>ng: ADC0</th><th>8238 (C</th><th>ontinued</th><th>)</th><th></th><th></th><th></th><th></th></td<>	Differentia	I MUX Mod	le	TABLE I	l. MUX Ac	dressi	ng: ADC0	8238 (C	ontinued)								
START SGL/ DIF ODD/ SIGN SELECT 0 1 2 3 1 0 0 0 1 2 3 4 5 6 7 1 0 0 0 1 - + - </th <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th>Analoo</th> <th>Differe</th> <th>ntial Ch</th> <th>annel</th> <th>-Pair #</th> <th>,</th> <th></th>			-					Analoo	Differe	ntial Ch	annel	-Pair #	,					
DIF SIGN 1 0 0 1 2 3 4 5 6 7 1 0 0 0 1 - <th></th> <th></th> <th></th> <th>SEL</th> <th>ЕСТ</th> <th></th> <th>0</th> <th></th> <th>-</th> <th></th> <th></th> <th> "</th> <th></th> <th>3</th>				SEL	ЕСТ		0		-			"		3				
1 0 0 1 - + - - - + - - + - - + - - + - - + - - + - - + - - + - - + - - 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 - + - - + - 1	START	DIF				0	1	2	3	4	۱ I	5	6	7				
1 0 1 0 - + - - + - - + - - + - - + - - + - 1 0 1 0 0 - + - - + - 1 0 1 0 1 1 0 1 1 1 0 1	1	0	0	0	0	+	-											
1 0 0 1 1 - + - + - 1 0 1 0 1 - + - + - - 1 0 1 1 0 - + + - + - + + - + + - + + - + + - + - + - + + - + + - + + - + + 1 1 1 1 1 1 1 1 1 1 1 1 <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td></td> <td></td> <td>+</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	0	0	0	1			+	-									
1 0 1 0 - + - - + - - + - - + - - + - - + - - + - - + - - + - - + - 1 0 1 1 1 0 - - + - - + - 1 1 0 1	1	0	0	1	0					+	-	-						
1 0 1 0 1 - + - + 1 0 1 1 0 - - + - + 1 0 1 1 1 0 - - + - + 1 0 1 1 1 0 - - + - + TABLE III. MUX Addressing: ADC08234 Single-Ended MUX Mode 1 1 0 1 2 3 1 1 0 0 + - + 1 1 0 1 + + - + 1 1 1 0 + 1 1 1 1 + + + + + + + + + + + <t< td=""><td>1</td><td>0</td><td>0</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td>-</td></t<>	1	0	0	1	1								+	-				
1 0 1 1 0 - + - + 1 0 1 1 1 1 - - + - + TABLE III. MUX Addressing: ADC08234 Single-Ended MUX Mode MUX Address Channel # 1 1 0 1 2 3 1 1 0 0 + - + 1 1 0 0 + - + 1 1 1 0 + - + 1 1 0 1 + - - + 1 1 1 0 + - + - - 1 1 1 1 0 + - + - - + - 1 1 1 1 1 - + - - - - - - - - - - - -	1	0	1	0	0	-	+											
1 0 1 1 1 - + TABLE III. MUX Addressing: ADC08234 Single-Ended MUX Mode MUX Address Channel # \$START \$SGL/ ODD/ \$SELECT 0 1 2 3 1 1 0 0 + - - + 1 1 0 0 + - - + 1 1 0 0 + - + - 1 1 1 0 1 + + - 1 1 1 1 + + + + 1 1 1 1 + + + + 1 1 1 1 + + + + Colspan="4">Channel # Sign Sign 1 2 3 Sign 1 0	1	0	1	0	1			-	+									
TABLE III. MUX Addressing: ADC08234 Single-Ended MUX Mode MUX Address Channel # START SGL/ ODD/ DIF SIGN 1 0 1 2 3 1 1 0 0 + - - - 1 1 0 1 2 3 - <td></td> <td></td> <td></td> <td>1</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>+</td> <td></td> <td></td>				1	0						-	+						
Single-Ended MUX Address Channel # START SGL/ ODD/ SELECT 0 1 2 3 1 1 0 0 + - </td <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>+</td>	1	0	1	1	1								-	+				
START DIF SIGN 1 0 1 2 3 1 1 0 0 + -			MUX Address						Chan									
1 1 0 1 + + 1 1 1 0 + + 1 1 1 1 + + 1 1 1 1 + + COM is internally tied to AGND COM is internally tied to AGND Differential MUX Mode START SGL/ ODD/ SELECT 0 1 2 3 START SGL/ ODD/ SELECT 0 1 2 3 1 0 0 1 2 3 1 0 0 1 2 3 1 0 0 1 2 3 1 1 0 0 1 - - - - - - <td< th=""><th></th><th>-</th><th>START</th><th></th><th></th><th></th><th></th><th>0</th><th colspan="2">1 2</th><th>3</th><th></th><th></th><th></th></td<>		-	START					0	1 2		3							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-	1					+		V								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		-								+								
COM is internally tied to AGND COM is internally tied to AGND Differential MUX Mode MUX Address Channel # START SGL/ ODD/ SELECT 0 1 2 3 1 0 0 1 2 3 1 0 0 1 2 3 1 0 0 1 2 3 1 0 0 1 2 3 1 2 3 1 2 3 1 1 2 3 1 1 2 <th 3<="" colspan="4" td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td>_</td><td></td><td></td></th>	<td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td>_</td> <td></td> <td></td>					-							+			_		
Differential MUX Mode MUX Address Channel # START SGL/ DIF ODD/ SIGN SELECT 1 0 1 2 3 1 0 0 0 + - - - 1 0 0 1 - + - - 1 0 1 0 - + - -		l	1	1	1		1											
MUX Address Channel # START SGL/ DIF ODD/ SIGN SELECT 1 0 1 2 3 1 0 0 0 + - - - 1 0 0 1 + - - - 1 0 1 0 - + - -								COM	l is internal	ly tied to A	AGND							
START SGL/ DIF ODD/ SIGN SELECT 1 0 1 2 3 1 0 0 0 + - - 1 0 0 1 + - - 1 0 1 0 - + - 1 0 1 0 - + -		I	Differential I	NUX Mode)													
START DIF SIGN 1 U 1 Z 3 1 0 0 0 + - - 1 0 0 1 + - 1 0 1 0 + - 1 0 1 0 - + - 1 0 1 0 - + -		[MUX Address						Chan	nel #								
1 0 0 1 + - 1 0 1 0 - + -			START					0	1	2	3							
1 0 1 0 - +			1	0	0		0	+	_									
			1	0	0		1			+	_							
1 0 1 1 - +			1	0	1		0	-	+									
			1	0	1		1			-	+							

Functional Description (Continued)

Since the input configuration is under software control, it can be modified as required before each conversion. A channel can be treated as a single-ended, ground referenced input for one conversion; then it can be reconfigured as part of a differential channel for another conversion. *Figure 1* illustrates the input flexibility which can be achieved. The analog input voltages for each channel can range from 50mV below ground to 50mV above V_{CC} (typically 5V) with-

out degrading conversion accuracy. **2.0 THE DIGITAL INTERFACE**

A most important characteristic of these converters is their serial data link with the controlling processor. Using a serial communication format offers two very significant system improvements; it allows many functions to be included in a small package and it can eliminate the transmission of low level analog signals by locating the converter right at the analog sensor; transmitting highly noise immune digital data back to the host processor. To understand the operation of these converters it is best to refer to the Timing Diagrams and Functional Block Diagram and to follow a complete conversion sequence. For clarity a separate timing diagram is shown for each device.

- A conversion is initiated by pulling the CS (chip select) line low. This line must be held low for the entire conversion. The converter is now waiting for a start bit and its MUX assignment word.
- 2. On each rising edge of the clock the status of the data in (DI) line is clocked into the MUX address shift register. The start bit is the first logic "1" that appears on this line (all leading zeros are ignored). Following the start bit the converter expects the next 2 to 4 bits to be the MUX assignment word.

Functional Description (Continued)

- 3. When the start bit has been shifted into the start location of the MUX register, the input channel has been assigned and a conversion is about to begin. An interval of 1½ clock periods is automatically inserted to allow for sampling the analog input. The SARS line goes high at the end of this time to signal that a conversion is now in progress and the DI line is disabled (it no longer accepts data).
- 4. The data out (DO) line now comes out of TRI-STATE and provides a leading zero.
- 5. During the conversion the output of the SAR comparator indicates whether the analog input is greater than (high) or less than (low) a series of successive voltages generated internally from a ratioed capacitor array (first 5 bits) and a resistor ladder (last 3 bits). After each comparison the comparator's output is shipped to the DO line on the falling edge of CLK. This data is the result of the conversion being shifted out (with the MSB first) and can be read by the processor immediately.
- After 8 clock periods the conversion is completed. The SARS line returns low to indicate this 1/2 clock cycle later.
- 7. The stored data in the successive approximation register is loaded into an internal shift register. If the programmer prefers, the data can be provided in an LSB first format [this makes use of the shift enable (SE) control line]. On the ADC08238 the SE line is brought out and if held high the value of the LSB remains valid on the DO line. When SE is forced low the data is clocked out LSB first. On devices which do not include the SE control line, the data, LSB first, is automatically shifted out the DO line after the MSB first data stream. The DO line then goes low and stays low until \overline{CS} is returned high. The ADC08231 is an exception in that its data is only output in MSB first format.
- All internal registers are cleared when the CS line is high and the t_{SELECT} requirement is met. See Data Input Timing under Timing Diagrams. If another conversion is desired CS must make a high to low transition followed by address information.

The DI and DO lines can be tied together and controlled through a bidirectional processor I/O bit with one wire.

This is possible because the DI input is only "looked-at" during the MUX addressing interval while the DO line is still in a high impedance state.

3.0 REFERENCE CONSIDERATIONS

The V_{REF}IN pin on these converters is the top of a resistor divider string and capacitor array used for the successive approximation conversion. The voltage applied to this reference input defines the voltage span of the analog input (the difference between V_{IN(MAX)} and V_{IN(MIN)} over which the 256 possible output codes apply). The reference source must be capable of driving the reference input resistance, which can be as low as 1.3 kΩ.

For absolute accuracy, where the analog input varies between specific voltage limits, the reference input must be biased with a stable voltage source. The ADC08234 and the ADC08238 provide the output of a 2.5V band-gap reference at V_{REF}OUT. This voltage does not vary appreciably with temperature, supply voltage, or load current (see Reference Characteristics in the Electrical Characteristics tables) and can be tied directly to V_{REF}IN for an analog input span of 0V to 2.5V. This output can also be used to bias external circuits and can therefore be used as the reference in ratiometric applications. Bypassing V_{REF}OUT with a 100 μ F capacitor is recommended.

For the ADC08231, the output of the on-board reference is internally tied to the reference input. Consequently, the analog input span for this device is set at 0V to 2.5V. The pin $V_{\mbox{\scriptsize REF}}C$ is provided for bypassing purposes and biasing external circuits as suggested above.

The maximum value of the reference is limited to the V_{CC} supply voltage. The minimum value, however, can be quite small (see Typical Performance Characteristics) to allow direct conversions of transducer outputs providing less than a 5V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $V_{REF/}$ 256).

Functional Description (Continued)

4.0 THE ANALOG INPUTS

The most important feature of these converters is that they can be located right at the analog signal source and through just a few wires can communicate with a controlling processor with a highly noise immune serial bit stream. This in itself greatly minimizes circuitry to maintain analog signal accuracy which otherwise is most susceptible to noise pickup. However, a few words are in order with regard to the analog inputs should the input be noisy to begin with or possibly riding on a large common-mode voltage.

The differential input of these converters actually reduces the effects of common-mode input noise, a signal common to both selected "+" and "-" inputs for a conversion (60 Hz is most typical). The time interval between sampling the "+" input and then the "-" input is $1/_2$ of a clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:

$$V_{error}(max) = V_{PEAK}(2\pi f_{CM}) \left(\frac{0.5}{f_{CLK}}\right)$$

where $f_{\mbox{CM}}$ is the frequency of the common-mode signal,

V_{PEAK} is its peak voltage value

and f_{CLK} is the A/D clock frequency.

For a 60Hz common-mode signal to generate a $1\!\!/_4$ LSB error ($\approx 5 \text{mV})$ with the converter running at 250kHz, its peak value would have to be 6.63V which would be larger than allowed as it exceeds the maximum analog input limits.

Source resistance limitation is important with regard to the DC leakage currents of the input multiplexer. While operating near or at maximum speed, bypass capacitors should not be used if the source resistance is greater than 1k Ω . The worst-case leakage current of $\pm 1\mu$ A over temperature will create a 1mV input error with a 1k Ω source resistance. An op amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required.

5.0 OPTIONAL ADJUSTMENTS

5.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $V_{\rm IN(MIN)}$, is not ground a zero offset can be done. The converter can be made to output 0000 0000 digital code for this minimum input voltage by biasing any $V_{\rm IN}~(-)$ input at this $V_{\rm IN(MIN)}$ value. This utilizes the differential mode operation of the A/D.

The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the V_{IN} (-) input and applying a small magnitude positive voltage to the V_{IN} (+) input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 0000 0000 to 0000 0001 and the ideal $\frac{1}{2}$ LSB value ($\frac{1}{2}$ LSB = 9.8mV for V_{BEF} = 5.000V_{DC}).

5.2 Full Scale

A full-scale adjustment can be made by applying a differential input voltage which is 1½ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the V_{REF}IN input for a digital output code which is just changing from 1111 1110 to 1111 1111 (See figure entitled "Span Adjust; $0V \le V_{IN} \le 3V$ "). This is possible only with the ADC08234 and ADC08238. (The reference is internally connected to V_{REF}IN of the ADC08231).

5.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A V_{IN} (+) voltage which equals this desired zero reference plus 1/₂ LSB (where the LSB is calculated for the desired analog span, using 1 LSB = analog span/256) is applied to selected "+" input and the zero reference voltage at the corresponding "-" input should then be adjusted to just obtain the 00_{HEX} to 01_{HEX} code transition.

The full-scale adjustment should be made [with the proper V_{IN} (-) voltage applied] by forcing a voltage to the V_{IN} (+) input which is given by:

$$V_{\text{IN}}$$
 (+) fs adj = $V_{\text{MAX}} - 1.5 \left[\frac{(V_{\text{MAX}} - V_{\text{MIN}})}{256} \right]$

where:

 V_{MAX} = the high end of the analog input range and

 $V_{MIN} =$ the low end (the offset zero) of the analog range. (Both are ground referenced.)

The V_{REF}IN (or V_{CC}) voltage is then adjusted to provide a code change from FE_{HEX} to FF_{HEX} . This completes the adjustment procedure.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Fax: (043) 299-2500

ADC08231/ADC08234/ADC08238 8-Bit 2 μs Serial I/O A/D Converters with MUX, Reference, and Track/Hold

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated