

CMOS Low Voltage 4 Ω Dual SPST Switches

ADG721/ADG722/ADG723

FEATURES

+1.8 V to +5.5 V Single Supply 4 Ω (Max) On Resistance Low On-Resistance Flatness -3 dB Bandwidth >200 MHz Rail-to-Rail Operation 8-Lead μ SOIC Package Fast Switching Times t_{ON} 20 ns t_{OFF} 10 ns Low Power Consumption (<0.1 μ W) TTL/CMOS Compatible

APPLICATIONS

Battery Powered Systems Communication Systems Sample Hold Systems Audio Signal Routing Video Switching Mechanical Reed Relay Replacement

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC "0" INPUT

GENERAL DESCRIPTION

The ADG721, ADG722 and ADG723 are monolithic CMOS SPST switches. These switches are designed on an advanced submicron process that provides low power dissipation yet gives high switching speed, low On resistance and low leakage currents.

The ADG721, ADG722 and ADG723 are designed to operate from a single +1.8 V to +5.5 V supply, making them ideal for use in battery powered instruments and with the new generation of DACs and ADCs from Analog Devices.

The ADG721, ADG722 and ADG723 contain two independent single-pole/single-throw (SPST) switches. The ADG721 and ADG722 differ only in that both switches are normally open and normally closed respectively. While in the ADG723, Switch 1 is normally open and Switch 2 is normally closed.

Each switch of the ADG721, ADG722 and ADG723 conducts equally well in both directions when on. The ADG723 exhibits break-before-make switching action.

PRODUCT HIGHLIGHTS

- 1. +1.8 V to +5.5 V Single Supply Operation. The ADG721, ADG722 and ADG723 offers high performance, including low on resistance and fast switching times and is fully specified and guaranteed with +3 V and +5 V supply rails.
- 2. Very Low R_{ON} (4 Ω max at 5 V, 10 Ω max at 3 V). At 1.8 V operation, R_{ON} is typically 40 Ω over the temperature range.
- 3. Low On-Resistance Flatness.
- 4. -3 dB Bandwidth >200 MHz.
- 5. Low Power Dissipation. CMOS construction ensures low power dissipation.
- 6. Fast t_{ON}/t_{OFF}.
- 7. 8-Lead µSOIC.

REV.0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

$\label{eq:stable} \begin{array}{l} \textbf{ADG721/ADG722/ADG723} \\ \textbf{-SPECIFICATIONS}^1 \\ (V_{DD} = +5 \ V \ \pm \ 10\%, \ \text{GND} = 0 \ \text{V}. \ \text{All specifications} \ -40^\circ \text{C} \ \text{to} \ +85^\circ \text{C}, \ \text{unless otherwise noted.} \end{array}$

$ \begin{array}{c c} C_{s} (OFF) & 7 & pF typ \\ C_{D} (OFF) & 7 & pF typ \\ C_{D}, C_{s} (ON) & 18 & pF typ \end{array} \\ \hline POWER REQUIREMENTS & & V_{DD} = +5.5 V \\ I_{DD} & 0.001 & \muA typ \end{array} $		B Version			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	+25°C		Units	Test Conditions/Comments
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ANALOG SWITCH				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0 V to V _{DD}	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4	22		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1.0	Ω max	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	On-Resistance Flatness (R _{FLAT(ON)})	0.85	1.5		$V_{\rm S} = 0$ V to $V_{\rm DD}$, $I_{\rm S} = -10$ mA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LEAKAGE CURRENTS				V _{DD} = +5.5 V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Source OFF Leakage I _S (OFF)	±0.01		nA typ	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		±0.25	±0.35	nA max	Test Circuit 2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_{S} = 4.5 V/1 V, V_{D} = 1 V/4.5 V$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		±0.25	±0.35	nA max	Test Circuit 2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Channel ON Leakage I _D , I _S (ON)	±0.01		nA typ	$V_{S} = V_{D} = 1 V$, or $V_{S} = V_{D} = 4.5 V$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		±0.25	±0.35	nA max	Test Circuit 3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DIGITAL INPUTS				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			2.4	V min	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				V max	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			± 0.1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DYNAMIC CHARACTERISTICS ²				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		14		ns typ	$R_r = 300 \Omega_r C_r = 35 pF$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-ON		20	• •	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	toff	6			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	011		10		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Break-Before-Make Time Delay, t _D	7		ns typ	
$ \begin{array}{c cccc} Charge Injection & 2 & pC typ & V_S = 2 V; R_S = 0 \Omega, C_L = 1 nF, \\ Test Circuit 6 & R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz \\ R_L = 50 \Omega, C_L = 5 pF, f = 1 0 MHz \\ R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz, \\ Test Circuit 7 & R_L = 50 \Omega, C_L = 5 pF, f = 1 0 MHz \\ R_L = 50 \Omega, C_L = 5 pF, f = 1 0 MHz \\ Test Circuit 7 & R_L = 50 \Omega, C_L = 5 pF, f = 1 0 MHz \\ P = 7 & dB typ & R_L = 50 \Omega, C_L = 5 pF, f = 1 0 MHz \\ R_L = 50 \Omega, C_L = 5 pF, f = 1 0 MHz \\ R_L = 50 \Omega, C_L = 5 pF, f = 1 0 MHz \\ R_L = 50 \Omega, C_L = 5 pF, f = 1 0 MHz \\ R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz, \\ Test Circuit 8 & R_L = 50 \Omega, C_L = 5 pF, f = 1 0 MHz \\ Test Circuit 8 & R_L = 50 \Omega, C_L = 5 pF, f = 1 0 MHz \\ C_S (OFF) & 7 & pF typ \\ C_D (OFF) & 7 & pF typ \\ C_D, C_S (ON) & 18 & pF typ \\ \hline POWER REQUIREMENTS & V_{DD} = +5.5 V \\ Digital Inputs = 0 V or 5 V \\ \hline \end{array} $			1	ns min	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Charge Injection	2		pC typ	$V_{S} = 2 V; R_{S} = 0 \Omega, C_{L} = 1 nF,$
$ \begin{array}{c c} \mbox{Channel-to-Channel Crosstalk} & -77 & & \mbox{dB typ} & & \mbox{Test Circuit 7} & \mbox{R}_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 10 \ MHz, \ R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz, \ Test \ Circuit 8 & \ R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz, \ Test \ Circuit 8 & \ R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz, \ Test \ Circuit 8 & \ R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ f = 1 \ MHz, \ Test \ Circuit 9 & \ C_S \ (OFF) & \ Test \ Circuit 8 & \ R_L = 50 \ \Omega, \ C_L = 5 \ pF, \ Test \ Circuit 9 & $	Off Isolation	-60		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-80		dB typ	
Bandwidth -3 dB200MHz typTest Circuit 8 C_{s} (OFF)7pF typ $R_{L} = 50 \Omega, C_{L} = 5 pF, Test Circuit 9$ C_{D} (OFF)7pF typ PF typ C_{D}, C_{s} (ON)18pF typ $V_{DD} = +5.5 V$ POWER REQUIREMENTS0.001 μA typDigital Inputs = 0 V or 5 V	Channel-to-Channel Crosstalk				
$ \begin{array}{c c} C_{S} (OFF) & 7 & pF typ \\ C_{D} (OFF) & 7 & pF typ \\ C_{D}, C_{S} (ON) & 18 & pF typ \end{array} \\ \hline POWER REQUIREMENTS & & V_{DD} = +5.5 V \\ I_{DD} & 0.001 & \muA typ \end{array} $		-97		dB typ	
$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $	Bandwidth –3 dB	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C_D, C_S (ON)18pF typPOWER REQUIREMENTS $V_{DD} = +5.5 V$ Digital Inputs = 0 V or 5 V I_{DD} 0.001 μA typ				pF typ	
POWER REQUIREMENTS $V_{DD} = +5.5 V$ Digital Inputs = 0 V or 5 V I_{DD} 0.001 $\mu A typ$					
$I_{DD} \qquad 0.001 \qquad \mu A typ$	$C_D, C_S(ON)$	18		pF typ	
I _{DD} 0.001 μA typ	POWER REQUIREMENTS				
	IDD	0.001		μA tvp	
1.0 WA IIIAA			1.0	μA max	

NOTES ¹Temperature ranges are as follows: B Version, -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

SPECIFICATIONS¹ ($V_{DD} = +3 V \pm 10\%$, GND = 0 V. All specifications -40°C to +85°C, unless otherwise noted.)

	B Version			
Parameter	+25°C	-40°C to +85°C	Units	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V _{DD}	V	
On Resistance (R_{ON})	6.5		Ω typ	$V_{S} = 0 V$ to V_{DD} , $I_{S} = -10 mA$
		10	Ω max	Test Circuit 1
On Resistance Match Between				
Channels (ΔR_{ON})	0.3		Ω typ	$V_{\rm S}$ = 0 V to $V_{\rm DD}$, $I_{\rm S}$ = -10 mA
		1.0	Ω max	
On-Resistance Flatness (R _{FLAT(ON)})		3.5	Ω typ	$V_{\rm S} = 0$ V to $V_{\rm DD}$, $I_{\rm S} = -10$ mA
LEAKAGE CURRENTS				$V_{DD} = +3.3 V$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_{\rm S} = 3 \text{ V/1 V}, V_{\rm D} = 1 \text{ V/3 V}$
200100 011 20010g0 13 (011)	± 0.25	±0.35	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	± 0.01	20100	nA typ	$V_{\rm S} = 3 \text{ V/1 V}, V_{\rm D} = 1 \text{ V/3 V}$
	± 0.25	±0.35	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	± 0.01	_0.05	nA typ	$V_{\rm S} = V_{\rm D} = 1$ V, or 3 V
(11)	± 0.01 ± 0.25	±0.35	nA max	Test Circuit 3
DIGITAL INPUTS		•	.	
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.4	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.1	μA max	
DYNAMIC CHARACTERISTICS ²				
t _{ON}	16		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		24	ns max	$V_s = 2 V$, Test Circuit 4
t _{OFF}	7		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		11	ns max	$V_s = 2 V$, Test Circuit 4
Break-Before-Make Time Delay, t _D	7		ns typ	$R_L = 300 \Omega, C_L = 35 pF,$
(ADG723 Only)		1	ns min	$V_{S1} = V_{S2} = 2 V$, Test Circuit 5
Charge Injection	2		pC typ	$V_{\rm S} = 1.5 \text{ V}; \text{ R}_{\rm S} = 0 \Omega, \text{ C}_{\rm L} = 1 \text{ nF},$
				Test Circuit 6
Off Isolation	-60		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz$
	-80		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz,$
			ID	Test Circuit 7
Channel-to-Channel Crosstalk	-77		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz$
	-97		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$,
	200		N411 -	Test Circuit 8
Bandwidth –3 dB	200		MHz typ	$R_L = 50 \Omega, C_L = 5 pF,$
C (OFF)	7		pF typ	Test Circuit 9
C _s (OFF)	7			
$C_{\rm D}$ (OFF)	7		pF typ	
$C_{\rm D}, C_{\rm S} \left({\rm ON} \right)$	18		pF typ	
POWER REQUIREMENTS				$V_{DD} = +3.3 V$
_				Digital Inputs = $0 \text{ V or } 3 \text{ V}$
I _{DD}	0.001		μA typ	
		1.0	μA max	

NOTES

 $^{1}Temperature ranges are as follows: B Version, <math display="inline">-40^{\circ}C$ to $+85^{\circ}C.$

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

 $(T_A = +25^{\circ}C \text{ unless otherwise noted})$

V_{DD} to GND $\ldots \ldots \ldots$
Analog, Digital Inputs ² -0.3 V to V _{DD} + 0.3 V or
30 mA, Whichever Occurs First
Continuous Current, S or D 30 mA
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range
Junction Temperature +150°C
μSOIC Package, Power Dissipation
θ_{JA} Thermal Impedance 206°C/W
$\theta_{\rm JC}$ Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec) +215°C
Infrared (15 sec) +220°C
ESD 2 kV

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

Table I. Truth Table (ADG721/ADG722)

ADG721 In	ADG722 In	Switch Condition
0	1	OFF
1	0	ON

Table II. Truth Table (ADG723)

Logic	Switch 1	Switch 2	
0	OFF	ON	
1	ON	OFF	

TERMINOLOGY

V _{DD}	Most Positive Power Supply Potential.
GND	Ground (0 V) Reference.
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input.
R _{ON}	Ohmic resistance between D and S.
ΔR_{ON}	On resistance match between any two channels
on	i.e., R _{ON} max – R _{ON} min.
R _{FLAT(ON)}	Flatness is defined as the difference between the
	maximum and minimum value of on resistance as
	measured over the specified analog signal range.
I _S (OFF)	Source leakage current with the switch "OFF."
I _D (OFF)	Drain leakage current with the switch "OFF."
$I_D, I_S (ON)$	Channel leakage current with the switch "ON."
$V_{\rm D}(V_{\rm S})$	Analog voltage on terminals D, S.
C _S (OFF)	"OFF" Switch Source Capacitance.
C _D (OFF)	"OFF" Switch Drain Capacitance.
$C_{D}, C_{S}(ON)$	"ON" Switch Capacitance.
t _{ON}	Delay between applying the digital control input
	and the output switching on.
t _{OFF}	Delay between applying the digital control input
	and the output switching off.
t _D	"OFF" time or "ON" time measured between the
	90% points of both switches, When switching
	from one address state to another. (ADG723 Only)
Crosstalk	A measure of unwanted signal which is coupled
	through from one channel to another as a result
	of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through
	an "OFF" switch.
Charge	A measure of the glitch impulse transferred
Injection	during switching.

PIN CONFIGURATION 8-Lead µSOIC (RM-8)

D1 2 ADG721/ 7 722/723 6 IN2 3 TOP VIEW 6	V _{DD} IN1 D2 S2
---	------------------------------------

ORDERING GUIDE

Model	Temperature Range	Brand*	Package Description	Package Option
ADG721BRM	-40°C to +85°C	S6B	μSOIC	RM-8
ADG722BRM	-40°C to +85°C	S7B	μSOIC	RM-8
ADG723BRM	-40°C to +85°C	S8B	μSOIC	RM-8

*Brand = Due to package size limitations, these three characters represent the part number.

CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG721/ADG722/ADG723 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Performance Characteristics-ADG721/ADG722/ADG723

Figure 1. On Resistance as a Function of V_D (V_S) Single Supplies

Figure 2. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = +3 V$

Figure 3. On Resistance as a Function of V_D (V_S) for Different Temperatures V_{DD} = +5 V

Figure 4. Supply Current vs. Input Switching Frequency

Figure 5. Off Isolation vs. Frequency

Figure 6. Crosstalk vs. Frequency

Figure 7. On Response vs. Frequency

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Break-Before-Make Time Delay, t_D (ADG723 Only)

Test Circuit 6. Charge Injection

Test Circuit 7. Off Isolation

Test Circuit 9. Bandwidth

Test Circuit 8. Channel-to-Channel Crosstalk

APPLICATIONS INFORMATION

The ADG721/ADG722/ADG723 belongs to Analog Devices' new family of CMOS switches. This series of general purpose switches have improved switching times, lower on resistance, higher bandwidths, low power consumption and low leakage currents.

ADG721/ADG722/ADG723 Supply Voltages

Functionality of the ADG721/ADG722/ADG723 extends from +1.8 V to +5.5 V single supply, which makes it ideal for battery powered instruments, where important design parameters are power efficiency and performance.

It is important to note that the supply voltage effects the input signal range, the on resistance and the switching times of the part. By taking a look at the typical performance characteristics and the specifications, the effects of the power supplies can be clearly seen.

For V_{DD} = +1.8 V, on resistance is typically 40 Ω over the temperature range.

On Response vs. Frequency

Figure 8 illustrates the parasitic components that affect the ac performance of CMOS switches (the switch is shown surrounded by a box). Additional external capacitances will further degrade some performance. These capacitances affect feedthrough, crosstalk and system bandwidth.

Figure 8. Switch Represented by Equivalent Parasitic Components

The transfer function that describes the equivalent diagram of the switch (Figure 8) is of the form (A)s shown below.

$$A(s) = R_T \left[\frac{s(R_{ON} \ C_{DS}) + 1}{s(R_{ON} \ C_T \ R_T) + 1} \right]$$

where:

 $C_T = C_{LOAD} + C_D + C_{DS}$ $R_T = R_{LOAD} / (R_{LOAD} + R_{ON})$

The signal transfer characteristic is dependent on the switch channel capacitance, C_{DS} . This capacitance creates a frequency zero in the numerator of the transfer function A(s). Because the switch on resistance is small, this zero usually occurs at high frequencies. The bandwidth is a function of the switch output capacitance combined with C_{DS} and the load capacitance. The frequency pole corresponding to these capacitances appears in the denominator of A(s).

The dominant effect of the output capacitance, C_D , causes the pole breakpoint frequency to occur first. Therefore, in order to maximize bandwidth a switch must have a low input and output capacitance and low on resistance. The On Response vs. Frequency plot for the ADG721/ADG722/ADG723 can be seen in Figure 7.

Off Isolation

Off isolation is a measure of the input signal coupled through an off switch to the switch output. The capacitance, C_{DS} , couples the input signal to the output load, when the switch is off as shown in Figure 9.

Figure 9. Off Isolation Is Affected by External Load Resistance and Capacitance

The larger the value of C_{DS} , larger values of feedthrough will be produced. The typical performance characteristic graph of Figure 5 illustrates the drop in off isolation as a function of frequency. From dc to roughly 1 MHz, the switch shows better than -80 dB isolation. Up to frequencies of 10 MHz, the off isolation remains better than -60 dB. As the frequency increases, more and more of the input signal is coupled through to the output. Off isolation can be maximized by choosing a switch with the smallest C_{DS} as possible. The values of load resistance and capacitance also affect off isolation, as they contribute to the coefficients of the poles and zeros in the transfer function of the switch when open.

$$A(s) = \left[\frac{s(R_{LOAD} \ C_{DS})}{s(R_{LOAD}) \ (C_{LOAD} + C_D + C_{DS}) + 1}\right]$$

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

8-Lead µSOIC (RM-8)

