



ADS8254 SLAS643-MARCH 2009

www.ti.com

# 16-BIT, 1-MSPS, PSEUDO-BIPOLAR DIFFERENTIAL SAR ADC WITH ON-CHIP ADC DRIVER (OPA) AND 4-CHANNEL DIFFERENTIAL MULTIPLEXER

### FEATURES

- 1.0-MHz Sample Rate, Zero Latency at Full Speed
- 16-Bit Resolution
- Supports Pseudo-Bipolar Differential Input Range: -4 V to +4 V with 2-V Common-Mode
- Built-In Four Channel, Differential Ended Multiplexer; with Channel Count Selection and Auto/Manual Mode
- On-Board Differential ADC Driver (OPA)
- Buffered Reference Output to Level Shift Bipolar ±4-V Input with External Resistance Divider
- Reference/2 Output to Set Common-Mode for External Signal Conditioner
- 16-/8-Bit Parallel Interface
- SNR: 95.4dB Typ at 2-kHz I/P
- THD: -118dB Typ at 2-kHz I/P
- Power Dissipation: 331.25 mW at 1 MSPS
- Internal Reference
- Internal Reference Buffer
- 64-Pin QFN Package

# APPLICATIONS

- Medical Imaging/CT Scanners
- Automated Test Equipment
- High-Speed Data Acquisition Systems
- High-Speed Closed-Loop Systems

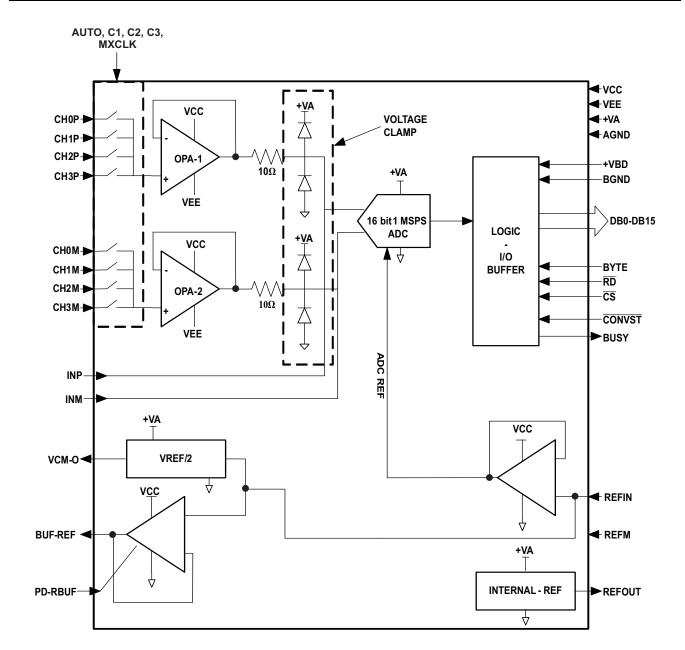
### DESCRIPTION

The ADS8254 is a high-performance analog system-on-chip (SoC) device with an 16-bit, 1-MSPS A/D converter, 4-V internal reference, an on-chip ADC driver (OPA), and a 4-channel differential multiplexer. The channel count of the multiplexer and auto/manual scan modes of the device are user selectable.

The ADC driver is designed to leverage the very high noise performance of the differential ADC at optimum power usage levels.

The ADS8254 outputs a buffered reference signal for level shifting of a  $\pm$ 4-V bipolar signal with an external resistance divider. A V<sub>ref</sub>/2 output signal is available to set the common-mode of a signal conditioning circuit. The device also includes an 16-/8-bit parallel interface.

The ADS8254 is available in a 9 mm x 9 mm, 64-pin QFN package and is characterized from -40°C to  $85^{\circ}$ C.


| TYPE/SPEED                        | 500 kHz | ~600 kHz    | 750 kHz | 1 MHz   | 1.25 MHz    | 2 MHz       | 3 MHz   | 4MHz    |
|-----------------------------------|---------|-------------|---------|---------|-------------|-------------|---------|---------|
| 18-Bit Pseudo-Diff                | ADS8383 | ADS8381     |         | ADS8481 |             |             |         |         |
| To-Bit FSeudo-Dill                |         | ADS8380 (s) |         |         |             |             |         |         |
| 18-Bit Pseudo-Bipolar, Fully Diff |         | ADS8382 (s) |         | ADS8284 | ADS8484     |             |         |         |
| T8-Bit Pseudo-Bipolar, Fully Dill |         |             |         | ADS8482 |             |             |         |         |
|                                   | ADS8327 | ADS8370 (s) | ADS8371 | ADS8471 | ADS8401     | ADS8411     |         |         |
| 16-Bit Pseudo-Diff                | ADS8328 |             |         |         | ADS8405     | ADS8410 (s) |         |         |
|                                   | ADS8319 |             |         |         |             |             |         |         |
| 16-Bit Pseudo-Bipolar, Fully Diff | ADS8318 | ADS8372 (s) |         | ADS8472 | ADS8402     | ADS8412     |         | ADS8422 |
| To-Bit Pseudo-Bipolar, Fully Dill |         |             |         | ADS8254 | ADS8406     | ADS8413 (s) |         |         |
| 14-Bit Pseudo-Diff                |         |             |         |         | ADS7890 (s) |             | ADS7891 |         |
| 12-Bit Pseudo-Diff                |         |             |         | ADS7886 |             | ADS7883     |         | ADS7881 |

#### HIGH-SPEED SAR CONVERTER FAMILY



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ADS8254 SLAS643-MARCH 2009





Submit Documentation Feedback





These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

#### ORDERING INFORMATION<sup>(1)</sup>

| MODEL     | MAXIMUM<br>INTEGRAL<br>LINEARITY<br>(LSB) | MAXIMUM<br>DIFFERENTIAL<br>LINEARITY<br>(LSB) | NO MISSING<br>CODES AT<br>RESOLUTION<br>(BIT) | PACKAGE<br>TYPE | PACKAGE<br>DESIGNATOR | TEMPERATURE<br>RANGE | ORDERING<br>INFORMATION | TRANSPORT<br>MEDIA<br>QUANTITY |              |               |     |          |               |     |
|-----------|-------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------|-----------------------|----------------------|-------------------------|--------------------------------|--------------|---------------|-----|----------|---------------|-----|
| ADS8254IB | ±0.75                                     | ±0.75                                         | .0.75                                         | ±0.5            | 16                    | 16                   |                         |                                |              |               | DOO | –40°C to | ADS8254IBRGCT | 250 |
| AD30234ID |                                           |                                               | ±0.5                                          |                 |                       |                      | 10                      |                                |              | ADS8254IBRGCR |     |          | 2000          |     |
| ADS82541  | .1 5                                      | .05                                           | 16                                            | 64-pin QFN      | RGC                   | 85°C                 | ADS8254IRGCT            | 250                            |              |               |     |          |               |     |
| AD56254I  | ±1.5                                      | ±0.5                                          | 16                                            |                 | .0 10                 |                      |                         |                                | ADS8254IRGCR | 2000          |     |          |               |     |

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, refer to the TI website at www.ti.com.

### ABSOLUTE MAXIMUM RATINGS<sup>(1)</sup>

over operating free-air temperature range (unless otherwise noted)

|                                           |                       | VALUE                                     | UNIT |
|-------------------------------------------|-----------------------|-------------------------------------------|------|
| CH(i) to AGND (both P and M i             | nputs)                | VEE-0.3 to VCC + 0.3                      | V    |
| VCC to VEE                                |                       | -0.3 to 18                                | V    |
| +VA to AGND                               | -0.3 to 7             | V                                         |      |
| +VBD to BDGND                             |                       | -0.3 to 7                                 | V    |
| ADC control digital input voltag          | e to GND              | -0.3 to (+VBD + 0.3)                      | V    |
| ADC control digital output to G           | ND                    | -0.3 to (+VBD + 0.3)                      | V    |
| Multiplexer control digital input         | voltage to GND        | -0.3 to (+VA + 0.3)                       | V    |
| Power control digital input volta         | ige to GND            | -0.3 to (+VCC + 0.3)                      | V    |
| Operating temperature range               |                       | -40 to 85                                 | °C   |
| Storage temperature range                 |                       | -65 to 150                                | °C   |
| Junction temperature (T <sub>J</sub> max) |                       | 150                                       | °C   |
|                                           | Power dissipation     | (T <sub>J</sub> Max–T <sub>A</sub> )/ θJA |      |
| QFN package                               | θJA Thermal impedance | 86                                        | °C/W |
|                                           | Vapor phase (60 sec)  | 215                                       | °C   |
| Lead temperature, soldering               | Infrared (15 sec)     | 220                                       | °C   |

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

3

# ADS8254

SLAS643-MARCH 2009



www.ti.com

### **SPECIFICATIONS**

 $T_A = -40^{\circ}C$  to 85°C, VCC = 5 V, VEE =-5 V, +VA = 5 V, +VBD = 5 V or 3.3 V,  $V_{ref} = 4$  V,  $f_{SAMPLE} = 1$  MSPS (unless otherwise noted)

| METER                           | TEST CONDITIONS                                                                                                        | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                 |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ultiplexer input <sup>(1)</sup> | CH(i)P–CH(i)M                                                                                                          | -V <sub>ref</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sub>ref</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| iplexer input                   | CH (i)                                                                                                                 | -0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sub>ref</sub> + 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| }                               | [CH(i)P + CH(i)M] /2                                                                                                   | (V <sub>ref</sub> )/2<br>- 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (V <sub>ref</sub> )/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (V <sub>ref</sub> )/2<br>+ 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                 |                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                 |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| ADS8254IB                       |                                                                                                                        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ADS8254I                        |                                                                                                                        | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| ADS8254IB                       |                                                                                                                        | -0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ADS8254I                        |                                                                                                                        | -1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LSB <sup>(3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ADS8254IB                       |                                                                                                                        | -0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| ADS8254I                        | At 18-bit level                                                                                                        | -0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LSB <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ADS8254IB                       |                                                                                                                        | -0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ADS8254I                        |                                                                                                                        | -0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ADS8254IB                       |                                                                                                                        | -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                 | External reference                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %FS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                 | At 3FFF0 <sub>H</sub> output code. For +VA or VCC, VEE variation of 0.5V individually                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                 |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                 | +VBD = 5 V                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                 | +VDB = 3 V                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                 | +VBD = 5 V                                                                                                             | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                 | +VDB = 3 V                                                                                                             | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                 |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                 |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                 |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                 | For ADC only                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                 | For OPA (OP1, OP2)+ Mux                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                 | For ADC only                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| rics                            |                                                                                                                        | _µ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ADS8254I                        |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ADS8254IB                       | $V_{IN} = 4 V_{pp} \text{ at } 2 \text{ kHz}$                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ADS8254I                        |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ADS8254IB                       | $V_{IN} = 4 V_{pp} \text{ at } 10 \text{ kHz}$                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ADS8254I                        | $V_{\rm bb} = 4 V_{\odot}$ at 100 kHz                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ADS8254IB                       | LoPWR = 0                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ADS8254I                        |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                 | $V_{IN} = 4 V_{pp} \text{ at } 2 \text{ kHz}$                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                 |                                                                                                                        | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                 | $V_{IN} = 4 V_{pp} \text{ at } 10 \text{ kHz}$                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                 | V <sub>IN</sub> = 4 V <sub>pp</sub> at 100 kHz,<br>LoPWR = 0                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ADS8254I                        |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                 | ADS8254I<br>ADS8254IB<br>ADS8254IB<br>ADS8254IB<br>ADS8254IB<br>ADS8254IB<br>ADS8254IB<br>ADS8254I<br>ADS8254I<br>atio | iplexer inputCH (i)ICH (i)P + CH(i)M] /2ICH (i)P + CH(i)M] /2ADS8254IBADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IFor ADC onlyFor ADC onlyFor ADC onlyFor ADC onlyFor ADC onlyFor ADC onlyFor ADC onlyADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8254IADS8 | iplexer input         CH (i)        0.2           ICH(i)P + CH(i)M]/2 $(V_{rel})/2$ -0.2           ADS8254IB         ICH(i)P + CH(i)M]/2 $(V_{rel})/2$ ADS8254IB         16           ADS8254IB         -0.75           ADS8254IB         -0.57           ADS8254IB         -0.5           ADS8254I         -0.5           ADS8254I         -0.5           ADS8254I         -0.5           ADS8254I         -0.5           ADS8254I         -0.5           ADS8254I         -0.5           +VBD = 5 V         -0.1           +VBB = 3 V         -0.1           For ADC only | iplexer input         CH (i)         -0.2           ICH(i)P + CH(i)M] /2 $(V_{rel})/2$ $(V_{rel})/2$ ICH(i)P + CH(i)M] /2 $(V_{rel})/2$ $(V_{rel})/2$ ADS8254IB         16         16           ADS8254IB         -0.75 $\pm 0.4$ ADS8254IB         -0.55 $\pm 0.4$ ADS8254IB         -0.5 $\pm 0.32$ ADS8254IB         -0.5 $\pm 0.32$ ADS8254IB         -0.5 $\pm 0.05$ ADS8254IB         -0.5 $\pm 0.05$ ADS8254IB         External reference $-0.1$ $\pm 0.025$ ADS8254I         External reference $-0.1$ $\pm 0.025$ ADS8254I         At 3FFF0 <sub>4</sub> output code. For +VA or VCC, VEE $\pm 0.20$ $\pm 0.025$ ADS8254I         At 3FFF0 <sub>4</sub> output code. For +VA or VCC, VEE $\pm 0.20$ $350$ +VDB = 5 V $\pm 0.20$ $50$ $\pm 0.20$ < | iplexer input         CH (i)         -0.2 $V_{eff}$ + 0.2           cH(i)P + CH(i)M]/2 $(V_{eff})/2$ < |  |

Ideal input span, does not include gain or offset error.
 Measured relative to acutal measured referenceThis is endpoint INL, not best fit.

(3) LSB means least significant bit

(4) Calculated on the first nine harmonics of the input frequency.

4 Submit Documentation Feedback



#### **SPECIFICATIONS (continued)**

 $T_A = -40$ °C to 85°C, VCC = 5 V, VEE =-5 V, +VA = 5 V, +VBD = 5 V or 3.3 V, V<sub>ref</sub> = 4 V, f<sub>SAMPLE</sub> = 1 MSPS (unless otherwise noted)

| PARA                                   | METER                              | TEST CONDITIONS                                                                             | MIN                 | TYP   | MAX                    | UNIT   |
|----------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------|---------------------|-------|------------------------|--------|
|                                        | ADS8254I                           | $V_{\rm IN} = 4 V_{\rm pp}$ at 2 kHz                                                        |                     | 95.2  |                        | dB     |
|                                        | ADS8254IB                          | $v_{\rm IN} = 4 v_{\rm pp}$ at 2 KHz                                                        |                     | 95.2  |                        | üb     |
| Signal to noise + distortion           | ADS8254I                           | $V_{\rm IN} = 4 V_{\rm pp}$ at 10 kHz                                                       |                     | 94.5  |                        | dB     |
| (SINAD)                                | ADS8254IB                          | $v_{\rm IN} = 4 v_{\rm pp}$ at 10 kHz                                                       |                     | 94.5  |                        | uБ     |
|                                        | ADS8254I                           | V <sub>IN</sub> = 4 V <sub>pp</sub> at 100 kHz,<br>LoPWR = 0                                |                     | 92.2  |                        | dB     |
|                                        | ADS8254IB                          | LOPWR = 0                                                                                   |                     | 93.4  |                        | uБ     |
|                                        | ADS8254I                           |                                                                                             |                     | 120   |                        | ٦b     |
|                                        | ADS8254IB                          | $V_{IN} = 4 V_{pp} \text{ at } 2 \text{ kHz}$                                               |                     | 120   |                        | dB     |
| Spurious free dynamic                  | ADS8254I                           |                                                                                             |                     | 106   |                        |        |
| range (SFDR)                           | ADS8254IB                          | $V_{IN} = 4 V_{pp}$ at 10 kHz                                                               |                     | 106   |                        | dB     |
|                                        | ADS8254I                           | $V_{IN} = 4 V_{nn}$ at 100 kHz,                                                             |                     | 101   |                        |        |
|                                        | ADS8254IB                          | $V_{\rm IN} = 4 V_{\rm pp} \text{ at } 100 \text{ kHz},$<br>LoPWR = 0                       |                     | 101   |                        | dB     |
| -3dB Small signal bandwidt             | h                                  |                                                                                             |                     | 8     |                        | MHz    |
| VOLTAGE REFERENCE IN                   | IPUT (REFIN)                       |                                                                                             |                     |       |                        |        |
| Reference voltage at REFIN             |                                    |                                                                                             | 3.0                 | 4.096 | +VA – 0.8              | V      |
| Reference input current <sup>(5)</sup> |                                    |                                                                                             |                     | 1     | 1                      | μΑ     |
| INTERNAL REFERENCE C                   | OUTPUT (REFOUT)                    |                                                                                             |                     |       |                        |        |
| Internal reference start-up ti         | me                                 | From 95% (+VA), with 1-µF storage capacitor                                                 |                     |       | 120                    | ms     |
| Reference voltage range, V             | ref                                |                                                                                             | 4.081               | 4.096 | 4.111                  | V      |
| Source current                         |                                    | Static load                                                                                 | 10                  |       |                        | μA     |
| Line regulation                        |                                    | +VA = 4.75 V ~ 5.25 V                                                                       |                     | 60    |                        | μV     |
| Drift                                  |                                    | $I_{O} = 0$                                                                                 |                     | ±6    |                        | PPM/°C |
| BUFFERED REFERENCE                     | OUTPUT (BUF-REF)                   |                                                                                             |                     |       |                        |        |
| Output current                         |                                    | REFIN = 4V, at 85°C                                                                         |                     | 70    |                        | mA     |
| REFERENCE/2 OUTPUT (\                  | /CMO)                              |                                                                                             |                     |       |                        |        |
| Output current                         |                                    | REFIN = 4V, at +85°C                                                                        |                     | 50    |                        | μA     |
| ANALOG MULTIPLEXER                     |                                    |                                                                                             |                     |       |                        |        |
| Number of channels                     |                                    |                                                                                             |                     |       | 8                      |        |
| Channel to channel crosstal            | lk                                 | 100 kHz i/p                                                                                 |                     | -95   |                        | dB     |
| Channel selection                      |                                    | Auto sequencer with selection of channel count OR<br>Manual selection through control lines |                     |       |                        |        |
| DIGITAL INPUT-OUTPUT                   |                                    | Mariaa obioonon anough control mico                                                         |                     |       |                        |        |
| ADC CONTROL PINS                       |                                    |                                                                                             |                     |       |                        |        |
| Logic Family-CMOS                      |                                    |                                                                                             |                     |       |                        |        |
|                                        | V <sub>IH</sub>                    | I <sub>IH</sub> = 5 μA                                                                      | +V <sub>BD</sub> -1 |       | +V <sub>BD</sub> + 0.3 | V      |
|                                        | V <sub>IL</sub>                    | $I_{\rm IL} = 5 \mu {\rm A}$                                                                | 0.3                 |       | 0.8                    | V      |
| Logic level                            |                                    | I <sub>OH</sub> = 2 TTL loads                                                               | +V <sub>BD</sub> -6 |       | +V <sub>BD</sub>       | V      |
|                                        | V <sub>OH</sub><br>V <sub>OL</sub> | $I_{OL} = 2$ TTL loads                                                                      | -v <sub>BD</sub> -0 |       | •• <sub>BD</sub>       | V      |
| MULTIPLEXER CONTROL                    |                                    | IUL - Z IIL IVAUS                                                                           | U                   |       | 0.4                    | v      |
| Logic Family - CMOS                    |                                    |                                                                                             |                     |       |                        |        |
| Logic Family - ONICO                   | L.                                 | I <sub>IH</sub> = 5 μA                                                                      | 2.3                 |       | +VA +0.3               | V      |
| Logic Level                            | h <sub>H</sub>                     |                                                                                             | -0.3                |       |                        | V      |
| POWER CONTROL PINS                     | l <sub>IL</sub>                    | $I_{IL} = 5 \ \mu A$                                                                        | -0.3                |       | 0.8                    | v      |
|                                        |                                    |                                                                                             |                     |       |                        |        |
| Logic Family - CMOS                    | V                                  | 1 - 5 - 10                                                                                  | 0.0                 |       | 11/4 . 0.0             | V      |
| Logic Level                            | V <sub>IH</sub>                    | $I_{\rm H} = 5 \mu A$                                                                       | 2.3                 |       | +VA +0.3               | -      |
|                                        | V <sub>IL</sub>                    | $I_{IL} = 5 \mu A$                                                                          | -0.3                |       | 0.8                    | V      |

(5) Can vary ±20%

# ADS8254

SLAS643-MARCH 2009



www.ti.com

### **SPECIFICATIONS (continued)**

 $T_A = -40^{\circ}C$  to 85°C, VCC = 5 V, VEE =-5 V, +VA = 5 V, +VBD = 5 V or 3.3 V,  $V_{ref} = 4$  V,  $f_{SAMPLE} = 1$  MSPS (unless otherwise noted)

| PAR                                                                 | AMETER                                  | TEST CONDITIONS                                                                         | MIN  | TYP   | MAX  | UNIT |
|---------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|------|-------|------|------|
| POWER SUPPLY REQU                                                   | IREMENTS                                |                                                                                         |      |       |      |      |
|                                                                     | +VBD                                    |                                                                                         | 2.7  | 3.3   | 5.25 | V    |
| Power auguly veltage                                                | +VA                                     |                                                                                         | 4.75 | 5     | 5.25 | V    |
| Power supply voltage                                                | VCC                                     |                                                                                         | 4.75 | 5     | 7.5  | V    |
|                                                                     | VEE                                     |                                                                                         | -7.5 | -5    | -3   | V    |
| ADC driver positive supply (VCC) current (for OP1 and OP2 together) |                                         | VCC = +5, VEE = -5V, CH0 - CH3 p and m inputs shorted to each other and connected to 2V |      | 11.65 |      | mA   |
| ADC driver negative supp<br>OP2 together)                           | bly (VEE) current (for OP1 and          | VCC = +5, CH0 - CH3 p and m inputs shorted to<br>each other and connected to 2V         |      | 9.6   |      | mA   |
| +VA Supply Current, 1MH                                             | Iz Sample Rate                          |                                                                                         |      | 45    | 50   | mA   |
| Reference buffer (BUF-R                                             | EF) supply current (VCC to              | VCC= +5, PD-RBUF = 0, Quiescent current                                                 |      | 8     |      | mA   |
| GND)                                                                | , , , , , , , , , , , , , , , , , , , , | VCC = 5, PD-RBUF = 1 <sup>(6)</sup>                                                     |      | 10    |      | μA   |
| TEMPERATURE RANGE                                                   | 1                                       | · · · · ·                                                                               |      |       | 1    |      |
| Operating free air                                                  |                                         |                                                                                         | -40  |       | 85   | °C   |

(6) PD-RBUF=1 powers down the Reference buffer (BUF-REF), note that it does not 3-state the BUF-REF output.

6



# **TIMING CHARACTERISTICS**

All specifications typical at -40°C to 85°C, +VA =+VBD = 5 V  $^{(1)}$   $^{(2)}$   $^{(3)}$ 

|                        | PARAMETER                                                                                                                                                                                                                                                                                                                              | MIN                    | ТҮР | MAX | UNIT |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|-----|------|
| t <sub>(CONV)</sub>    | Conversion time                                                                                                                                                                                                                                                                                                                        |                        |     | 650 | ns   |
| t <sub>(ACQ)</sub>     | Acquisition time                                                                                                                                                                                                                                                                                                                       | 320                    |     |     | ns   |
| t <sub>(HOLD)</sub>    | Sample capacitor hold time                                                                                                                                                                                                                                                                                                             |                        |     | 25  | ns   |
| t <sub>pd1</sub>       | CONVST low to BUSY high                                                                                                                                                                                                                                                                                                                |                        |     | 40  | ns   |
| t <sub>pd2</sub>       | Propagation delay time, end of conversion to BUSY low                                                                                                                                                                                                                                                                                  |                        |     | 15  | ns   |
| t <sub>pd3</sub>       | Propagation delay time, start of convert state to rising edge of BUSY                                                                                                                                                                                                                                                                  |                        |     | 15  | ns   |
| t <sub>w1</sub>        | Pulse duration, CONVST low                                                                                                                                                                                                                                                                                                             | 40                     |     |     | ns   |
| t <sub>su1</sub>       | Setup time, CS low to CONVST low                                                                                                                                                                                                                                                                                                       | 20                     |     |     | ns   |
| t <sub>w2</sub>        | Pulse duration, CONVST high                                                                                                                                                                                                                                                                                                            | 20                     |     |     | ns   |
|                        | CONVST falling edge jitter                                                                                                                                                                                                                                                                                                             |                        |     | 10  | ps   |
| t <sub>w3</sub>        | Pulse duration, BUSY signal low                                                                                                                                                                                                                                                                                                        | t <sub>(ACQ)</sub> min |     |     | ns   |
| t <sub>w4</sub>        | Pulse duration, BUSY signal high                                                                                                                                                                                                                                                                                                       |                        |     | 650 | ns   |
| t <sub>h1</sub>        | Hold time, first data bus transition ( $\overline{\text{RD}}$ low, or $\overline{\text{CS}}$ low for read cycle, or BYTE or BUS18/16 input changes) after $\overline{\text{CONVST}}$ low                                                                                                                                               | 40                     |     |     | ns   |
| t <sub>d1</sub>        | Delay time, CS low to RD low                                                                                                                                                                                                                                                                                                           | 0                      |     |     | ns   |
| t <sub>su2</sub>       | Setup time, RD high to CS high                                                                                                                                                                                                                                                                                                         | 0                      |     |     | ns   |
| t <sub>w5</sub>        | Pulse duration, RD low                                                                                                                                                                                                                                                                                                                 | 50                     |     |     | ns   |
| t <sub>en</sub>        | Enable time, $\overline{RD}$ low (or $\overline{CS}$ low for read cycle) to data valid                                                                                                                                                                                                                                                 |                        |     | 20  | ns   |
| t <sub>d2</sub>        | Delay time, data hold from RD high                                                                                                                                                                                                                                                                                                     | 5                      |     |     | ns   |
| t <sub>d3</sub>        | Delay time, BUS18/16 or BYTE rising edge or falling edge to data valid                                                                                                                                                                                                                                                                 | 10                     |     | 20  | ns   |
| t <sub>w6</sub>        | Pulse duration, RD high                                                                                                                                                                                                                                                                                                                | 20                     |     |     | ns   |
| t <sub>w7</sub>        | Pulse duration, CS high                                                                                                                                                                                                                                                                                                                | 20                     |     |     | ns   |
| t <sub>h2</sub>        | Hold time, last $\overline{RD}$ (or $\overline{CS}$ for read cycle ) rising edge to $\overline{CONVST}$ falling edge                                                                                                                                                                                                                   | 50                     |     |     | ns   |
| t <sub>pd4</sub>       | Propagation delay time, BUSY falling edge to next $\overline{\text{RD}}$ (or $\overline{\text{CS}}$ for read cycle) falling edge                                                                                                                                                                                                       | 0                      |     |     | ns   |
| t <sub>d4</sub>        | Delay time, BYTE edge to BUS18/16 edge skew                                                                                                                                                                                                                                                                                            | 0                      |     |     | ns   |
| t <sub>su3</sub>       | Setup time, BYTE or BUS18/16 transition to RD falling edge                                                                                                                                                                                                                                                                             | 10                     |     |     | ns   |
| t <sub>h3</sub>        | Hold time, BYTE or BUS18/16 transition to RD falling edge                                                                                                                                                                                                                                                                              | 10                     |     |     | ns   |
| t <sub>dis</sub>       | Disable time, RD high (CS high for read cycle) to 3-stated data bus                                                                                                                                                                                                                                                                    |                        |     | 20  | ns   |
| t <sub>d5</sub>        | Delay time, BUSY low to MSB data valid delay                                                                                                                                                                                                                                                                                           |                        |     | 0   | ns   |
| t <sub>d6</sub>        | Delay time, CS rising edge to BUSY falling edge                                                                                                                                                                                                                                                                                        | 50                     |     |     | ns   |
| t <sub>d7</sub>        | Delay time, BUSY falling edge to $\overline{CS}$ rising edge                                                                                                                                                                                                                                                                           | 50                     |     |     | ns   |
| t <sub>su5</sub>       | BYTE transition setup time, from BYTE transition to next BYTE transition, or BUS18/16 transition setup time, from BUS18/16 to next BUS18/16.                                                                                                                                                                                           | 50                     |     |     | ns   |
| t <sub>su(ABORT)</sub> | Setup time from the <u>falling edge</u> of $\overline{\text{CONVST}}$ (used to start the valid conversion) to the next falling edge of $\overline{\text{CONVST}}$ (when CS = 0 and $\overline{\text{CONVST}}$ are used to abort) or to the next falling edge of $\overline{\text{CS}}$ (when $\overline{\text{CS}}$ is used to abort). | 60                     |     | 550 | ns   |

(1) All input signals are specified with  $t_r = t_f = 5$  ns (10% to 90% of +VBD) and timed from a voltage level of (V<sub>IL</sub> + V<sub>IH</sub>)/2. (2) See timing diagrams.

(2) (3) All timing are measured with 20 pF equivalent loads on all data bits and BUSY pins.

Copyright © 2009, Texas Instruments Incorporated

SLAS643-MARCH 2009

#### ÈXAS INSTRUMENTS

www.ti.com

#### **TIMING CHARACTERISTICS**

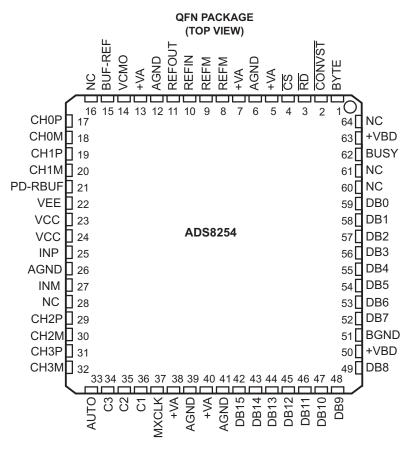
All specifications typical at -40°C to 85°C, +VA = 5 V +VBD = 3 V  $^{(1)}$   $^{(2)}$   $^{(3)}$ 

|                        | PARAMETER                                                                                                                                                                                                                                                                                                                       | MIN                    | TYP | MAX | UNIT |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|-----|------|
| t <sub>(CONV)</sub>    | Conversion time                                                                                                                                                                                                                                                                                                                 |                        |     | 650 | ns   |
| t <sub>(ACQ)</sub>     | Acquisition time                                                                                                                                                                                                                                                                                                                | 310                    |     |     | ns   |
| t <sub>(HOLD)</sub>    | Sample capacitor hold time                                                                                                                                                                                                                                                                                                      |                        |     | 25  | ns   |
| t <sub>pd1</sub>       | CONVST low to BUSY high                                                                                                                                                                                                                                                                                                         |                        |     | 40  | ns   |
| t <sub>pd2</sub>       | Propagation delay time, end of conversion to BUSY low                                                                                                                                                                                                                                                                           |                        |     | 25  | ns   |
| t <sub>pd3</sub>       | Propagation delay time, start of convert state to rising edge of BUSY                                                                                                                                                                                                                                                           |                        |     | 25  | ns   |
| t <sub>w1</sub>        | Pulse duration, CONVST low                                                                                                                                                                                                                                                                                                      | 40                     |     |     | ns   |
| t <sub>su1</sub>       | Setup time, CS low to CONVST low                                                                                                                                                                                                                                                                                                | 20                     |     |     | ns   |
| t <sub>w2</sub>        | Pulse duration, CONVST high                                                                                                                                                                                                                                                                                                     | 20                     |     |     | ns   |
|                        | CONVST falling edge jitter                                                                                                                                                                                                                                                                                                      |                        |     | 10  | ps   |
| t <sub>w3</sub>        | Pulse duration, BUSY signal low                                                                                                                                                                                                                                                                                                 | t <sub>(ACQ)</sub> min |     |     | ns   |
| t <sub>w4</sub>        | Pulse duration, BUSY signal high                                                                                                                                                                                                                                                                                                |                        |     | 650 | ns   |
| t <sub>h1</sub>        | Hold time, first data bus transition ( $\overline{RD}$ low, or $\overline{CS}$ low for read cycle, or BYTE or BUS18/16 input changes) after $\overline{CONVST}$ low                                                                                                                                                             | 40                     |     |     | ns   |
| t <sub>d1</sub>        | Delay time, CS low to RD low                                                                                                                                                                                                                                                                                                    | 0                      |     |     | ns   |
| t <sub>su2</sub>       | Setup time, RD high to CS high                                                                                                                                                                                                                                                                                                  | 0                      |     |     | ns   |
| t <sub>w5</sub>        | Pulse duration, RD low                                                                                                                                                                                                                                                                                                          | 50                     |     |     | ns   |
| t <sub>en</sub>        | Enable time, $\overline{RD}$ low (or $\overline{CS}$ low for read cycle) to data valid                                                                                                                                                                                                                                          |                        |     | 30  | ns   |
| t <sub>d2</sub>        | Delay time, data hold from RD high                                                                                                                                                                                                                                                                                              | 5                      |     |     | ns   |
| t <sub>d3</sub>        | Delay time, BUS18/16 or BYTE rising edge or falling edge to data valid                                                                                                                                                                                                                                                          | 10                     |     | 30  | ns   |
| t <sub>w6</sub>        | Pulse duration, RD high                                                                                                                                                                                                                                                                                                         | 20                     |     |     | ns   |
| t <sub>w7</sub>        | Pulse duration, CS high                                                                                                                                                                                                                                                                                                         | 20                     |     |     | ns   |
| t <sub>h2</sub>        | Hold time, last $\overline{RD}$ (or $\overline{CS}$ for read cycle ) rising edge to $\overline{CONVST}$ falling edge                                                                                                                                                                                                            | 50                     |     |     | ns   |
| t <sub>pd4</sub>       | Propagation delay time, BUSY falling edge to next $\overline{RD}$ (or $\overline{CS}$ for read cycle) falling edge                                                                                                                                                                                                              | 0                      |     |     | ns   |
| t <sub>d4</sub>        | Delay time, BYTE edge to BUS18/16 edge skew                                                                                                                                                                                                                                                                                     | 0                      |     |     | ns   |
| t <sub>su3</sub>       | Setup time, BYTE or BUS18/16 transition to RD falling edge                                                                                                                                                                                                                                                                      | 10                     |     |     | ns   |
| t <sub>h3</sub>        | Hold time, BYTE or BUS18/16 transition to RD falling edge                                                                                                                                                                                                                                                                       | 10                     |     |     | ns   |
| t <sub>dis</sub>       | Disable time, RD high (CS high for read cycle) to 3-stated data bus                                                                                                                                                                                                                                                             |                        |     | 30  | ns   |
| t <sub>d5</sub>        | Delay time, BUSY low to MSB data valid delay                                                                                                                                                                                                                                                                                    |                        |     | 0   | ns   |
| t <sub>d6</sub>        | Delay time, CS rising edge to BUSY falling edge                                                                                                                                                                                                                                                                                 | 50                     |     |     | ns   |
| t <sub>d7</sub>        | Delay time, BUSY falling edge to $\overline{CS}$ rising edge                                                                                                                                                                                                                                                                    | 50                     |     |     | ns   |
| t <sub>su5</sub>       | BYTE transition setup time, from BYTE transition to next BYTE transition, or BUS18/16 transition setup time, from BUS18/16 to next BUS18/16.                                                                                                                                                                                    | 50                     |     |     | ns   |
| t <sub>su(ABORT)</sub> | Setup time from the falling edge of $\overline{\text{CONVST}}$ (used to start the valid conversion) to the next falling edge of $\overline{\text{CONVST}}$ (when CS = 0 and $\overline{\text{CONVST}}$ are used to abort) or to the next falling edge of $\overline{\text{CS}}$ (when $\overline{\text{CS}}$ is used to abort). | 70                     |     | 550 | ns   |

(1) All input signals are specified with  $t_r = t_f = 5$  ns (10% to 90% of +VBD) and timed from a voltage level of (V<sub>IL</sub> + V<sub>IH</sub>)/2. (2) See timing diagrams.

8

(2) (3) All timing are measured with 20 pF equivalent loads on all data bits and BUSY pins.


### **MULTIPLEXER TIMING REQUIREMENTS**

VCC = 4.75 V to 7.5 V, VEE = -3 V to -7.5 V

|                  |                                                                                    | MIN | TYP | MAX | UNIT |
|------------------|------------------------------------------------------------------------------------|-----|-----|-----|------|
| t <sub>su6</sub> | Setup time C1, C2 or C3 to MXCLK rising edge                                       |     |     | 600 | ns   |
| t <sub>d8</sub>  | Multiplexer and driver settle time (from MXCLK rising edge to CONVST falling edge) | 600 |     |     | ns   |



#### **PIN ASSIGNMENTS**



#### **PIN FUNCTIONS**

| PIN         | PIN I/O     |                                                                                                             | DESCRIPTION                                                                                                                                          |  |  |
|-------------|-------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NO          | NAME        | 1/0                                                                                                         | DESCRIPTION                                                                                                                                          |  |  |
| MULTIPLEXE  | r input pii | NS                                                                                                          |                                                                                                                                                      |  |  |
| 17          | CH0P        | I                                                                                                           | Non-inverting analog input for differential multiplexer channel number 0. Device performance is optimized for 50 ohm source impedance at this input. |  |  |
| 18          | CH0M        | I                                                                                                           | Inverting analog input for differential multiplexer channel number 0. Device performance is optimized for 50 ohm source impedance at this input.     |  |  |
| 19          | CH1P        | I                                                                                                           | Non-inverting analog input for differential multiplexer channel number 1. Device performance is optimized for 50 ohm source impedance at this input. |  |  |
| 20          | CH1M        | Ι                                                                                                           | Inverting analog input for differential multiplexer channel number 1. Device performance is optimized for 50 ohm source impedance at this input.     |  |  |
| 29          | CH2P        | I                                                                                                           | Non-inverting analog input for differential multiplexer channel number 2. Device performance is optimized for 50 ohm source impedance at this input. |  |  |
| 30          | CH2M        | I                                                                                                           | Inverting analog input for differential multiplexer channel number 2. Device performance is optimized for 50 ohm source impedance at this input.     |  |  |
| 31          | СНЗР        | I                                                                                                           | Non-inverting analog input for differential multiplexer channel number 3. Device performance is optimized for 50 ohm source impedance at this input. |  |  |
| 32          | СНЗМ        | I                                                                                                           | Inverting analog input for differential multiplexer channel number 3. Device performance is optimized for 50 ohm source impedance at this input.     |  |  |
| ADC INPUT P | INS         |                                                                                                             |                                                                                                                                                      |  |  |
| 25          | INP         | Ι                                                                                                           | ADC Non inverting input., connect 1nF cap across INP and INM                                                                                         |  |  |
| 27          | INM         | I                                                                                                           | ADC Inverting input, connect 1nF cap across INP and INM                                                                                              |  |  |
| REFERENCE   | INPUT/ OUT  |                                                                                                             | INS                                                                                                                                                  |  |  |
| 8, 9        | REFM        | Ι                                                                                                           | Reference ground.                                                                                                                                    |  |  |
| 10          | REFIN       | I                                                                                                           | Reference Input. Add 0.1- $\mu$ F decoupling capacitor between REFIN and REFM.                                                                       |  |  |
| 11          | REFOUT      | O Reference Output. Add 1-μF capacitor between the REFOUT pin and REFM pin when internal reference is used. |                                                                                                                                                      |  |  |

ADS8254 SLAS643-MARCH 2009

### www.ti.com

Texas Instruments

### PIN FUNCTIONS (continued)

| PIN                  | ,           | I/O    |                                                                                   | DESCRIPTION                                                                                                                                                                 |                               |  |  |  |  |
|----------------------|-------------|--------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|--|--|
| NO                   | NAME        |        |                                                                                   |                                                                                                                                                                             |                               |  |  |  |  |
| 14                   | VCMO        | 0      | This pin outputs Refin/2 and can be used                                          | to set common-mode voltage of differential a                                                                                                                                | analog inputs.                |  |  |  |  |
| 15                   | BUF-<br>REF | 0      | Buffered reference output. Useful to level                                        | uffered reference output. Useful to level shift bipolar signals using external resistors.                                                                                   |                               |  |  |  |  |
| POWER CONT           | ROL PINS    |        |                                                                                   |                                                                                                                                                                             |                               |  |  |  |  |
| 21                   | PD-<br>RBUF | T      | High on this pin powers down the referen                                          | nce buffer (BUF-REF).                                                                                                                                                       |                               |  |  |  |  |
| MULTIPLEXER          |             | L PINS | l                                                                                 |                                                                                                                                                                             |                               |  |  |  |  |
| 33                   | AUTO        | I      | High level on this pin selects 'Auto' mode                                        | n level on this pin selects 'Auto' mode for multiplexer scanning. Low level selects manual mode of multiplexer scanning                                                     |                               |  |  |  |  |
| 34                   | C3          | I      | In auto mode (AUTO=1) multiplexer char<br>not care' in manual mode.               | auto mode (AUTO=1) multiplexer channel selection is reset to CH0 on rising edge of MXCLK while C3=1. The pin is 'do                                                         |                               |  |  |  |  |
| 35                   | C2          | Ι      |                                                                                   | cts as multiplexer address bit when AUTO=0 (Manual mode). In auto mode (AUTO=1) C2 and C1 select the last<br>nultiplexer channel (channel count) in the auto scan sequence. |                               |  |  |  |  |
| 36                   | C1          | I      | Acts as multiplexer address LSB when A multiplexer channel (channel count) in the | UTO=0 (Manual mode). In auto mode (AUTO e auto scan sequence.                                                                                                               | =1) C2 and C1 select the last |  |  |  |  |
| 37                   | MXCLK       | I      |                                                                                   | edge of MXCLK irrespective of whether it is a<br>nat device selects next channel at the end of                                                                              |                               |  |  |  |  |
| ADC DATA BL          | JS          |        | 1                                                                                 |                                                                                                                                                                             |                               |  |  |  |  |
| 12 10 52 50          | Data Puc    |        | 8-B                                                                               | IT BUS                                                                                                                                                                      | 16-BIT BUS                    |  |  |  |  |
| 42-49, 52-59         | Data Bus    |        | BYTE = 0                                                                          | BYTE = 1                                                                                                                                                                    | BYTE = 0                      |  |  |  |  |
| 42                   | DB15        | 0      | D15 (MSB)                                                                         | D7                                                                                                                                                                          | D15(MSB)                      |  |  |  |  |
| 43                   | DB14        | 0      | D14                                                                               | D6                                                                                                                                                                          | D14                           |  |  |  |  |
| 44                   | DB13        | 0      | D13                                                                               | D5                                                                                                                                                                          | D13                           |  |  |  |  |
| 45                   | DB12        | 0      | D12                                                                               | D4                                                                                                                                                                          | D12                           |  |  |  |  |
| 46                   | DB11        | 0      | D11                                                                               | D3                                                                                                                                                                          | D11                           |  |  |  |  |
| 47                   | DB10        | 0      | D10                                                                               | D2                                                                                                                                                                          | D10                           |  |  |  |  |
| 48                   | DB9         | 0      | D9                                                                                | D1                                                                                                                                                                          | D9                            |  |  |  |  |
| 49                   | DB8         | 0      | D8                                                                                | D0                                                                                                                                                                          | D8                            |  |  |  |  |
| 52                   | DB7         | 0      | D7                                                                                | All ones                                                                                                                                                                    | D7                            |  |  |  |  |
| 53                   | DB6         | 0      | D6                                                                                | All ones                                                                                                                                                                    | D6                            |  |  |  |  |
| 54                   | DB5         | 0      | D5                                                                                | All ones                                                                                                                                                                    | D5                            |  |  |  |  |
| 55                   | DB4         | 0      | D4                                                                                | All ones                                                                                                                                                                    | D4                            |  |  |  |  |
| 56                   | DB3         | 0      | D3                                                                                | All ones                                                                                                                                                                    | D3                            |  |  |  |  |
| 57                   | DB2         | 0      | D2                                                                                | All ones                                                                                                                                                                    | D2                            |  |  |  |  |
| 58                   | DB1         | 0      | D1                                                                                | All ones                                                                                                                                                                    | D1                            |  |  |  |  |
| 59                   | DB0         | 0      | D0 (LSB)                                                                          | All ones                                                                                                                                                                    | D0 (LSB)                      |  |  |  |  |
| ADC CONTRO           | L PINS      |        |                                                                                   |                                                                                                                                                                             | •                             |  |  |  |  |
| 62                   | BUSY        | 0      | Status output. This pin is held high when                                         | device is converting.                                                                                                                                                       |                               |  |  |  |  |
| 1                    | BYTE        | I      | Byte Select Input. Used for 8-bit bus read                                        | ding. Refer to the ADC DATA BUS description                                                                                                                                 | above.                        |  |  |  |  |
| 2                    | CONVST      | I      | Convert start. This input is active low and                                       | d can act independent of the CS\ input.                                                                                                                                     |                               |  |  |  |  |
| 3                    | RD          | I      | Synchronization pulse for the parallel out                                        | put.                                                                                                                                                                        |                               |  |  |  |  |
| 4                    | CS          | I      | Chip Select.                                                                      |                                                                                                                                                                             |                               |  |  |  |  |
|                      | ER SUPPLI   | ES     |                                                                                   |                                                                                                                                                                             |                               |  |  |  |  |
| 22                   | VEE         |        | Negative supply for OPA (OP1, OP2)                                                |                                                                                                                                                                             |                               |  |  |  |  |
| 23, 24               | VCC         |        | Positive supply for OPA (OP1, OP2, BUF                                            | F-REF)                                                                                                                                                                      |                               |  |  |  |  |
| 5, 7, 13, 38,<br>40  | +VA         |        | Analog power supply.                                                              |                                                                                                                                                                             |                               |  |  |  |  |
| 6, 12, 26, 39,<br>41 | AGND        |        | Analog ground.                                                                    |                                                                                                                                                                             |                               |  |  |  |  |
| 50, 63               | +VBD        |        | Digital Power Supply For ADC Bus.                                                 |                                                                                                                                                                             |                               |  |  |  |  |
| 51                   | BGND        |        | Digital ground for ADC bus interface digital supply.                              |                                                                                                                                                                             |                               |  |  |  |  |
| NOT CONNEC           | TED PINS    |        |                                                                                   |                                                                                                                                                                             |                               |  |  |  |  |
| 16, 28, 60,          | NO          |        | No connection                                                                     |                                                                                                                                                                             |                               |  |  |  |  |
| 61, 64               | NC          |        | No connection.                                                                    |                                                                                                                                                                             |                               |  |  |  |  |



#### **DEVICE OPERATION AND TIMING DIAGRAMS**

The ADS8254 is analog system-on-chip (SoC) device. The device includes a multiplexer, a single-ended input/differential output ADC driver and differential input high-performance ADC, an additional internal reference, a buffered reference output, and a REF/2 output.

Figure 1 shows the basic operation of the device (including all elements). Subsequent sections describe the detailed timings of the individual blocks of the device (primarily the multiplexer and ADC).

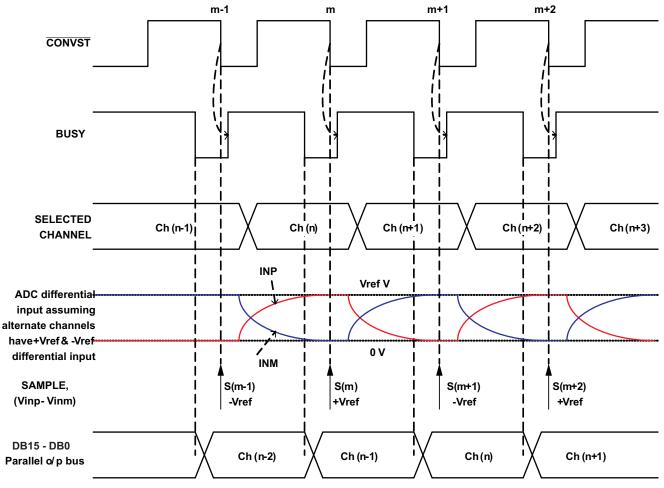
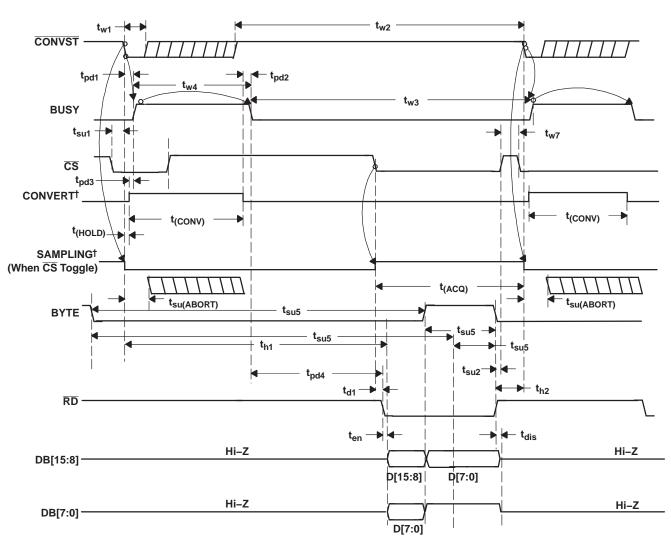
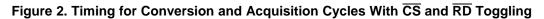


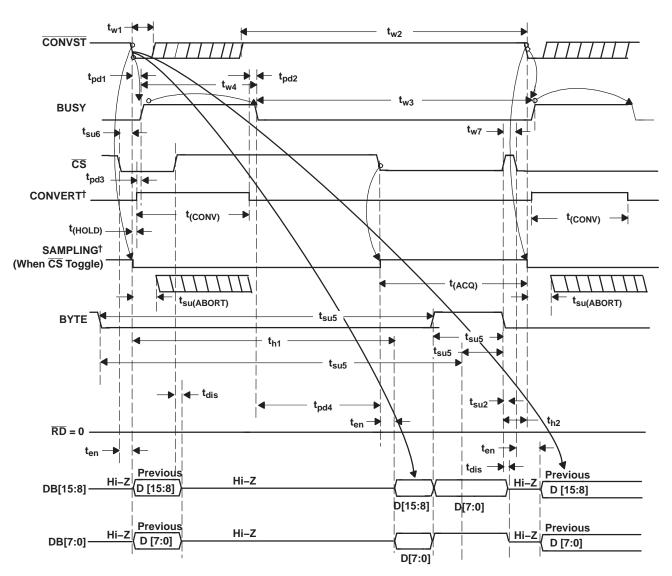

Figure 1. Device Operation


As shown in the diagram, the device can be controlled with only one (CONVST) digital input. On the falling edge of CONVST, the BUSY output of the device goes high. A high level on BUSY indicates the device has sampled the signal and it is converting the sample into its digital equivalent. After the conversion is complete, the BUSY output falls to a logic low level and the device output data corresponding to the recently converted sample is available for reading.

It is recommended (not mandatory) to short the BUSY output of the device to the MXCLK input. The device selects a new channel at every rising edge of MXCLK. The multiplexer is differential. The multiplexer and ADC driver are designed to settle to the 18-bit level before sampling; even at the maximum conversion speed.


**ADC Control and Timing:** The timing diagrams in the this section describe ADC operation; multiplexer operation is described in a the following sections.

ADS8254 SLAS643-MARCH 2009






<sup>†</sup>Signal internal to device



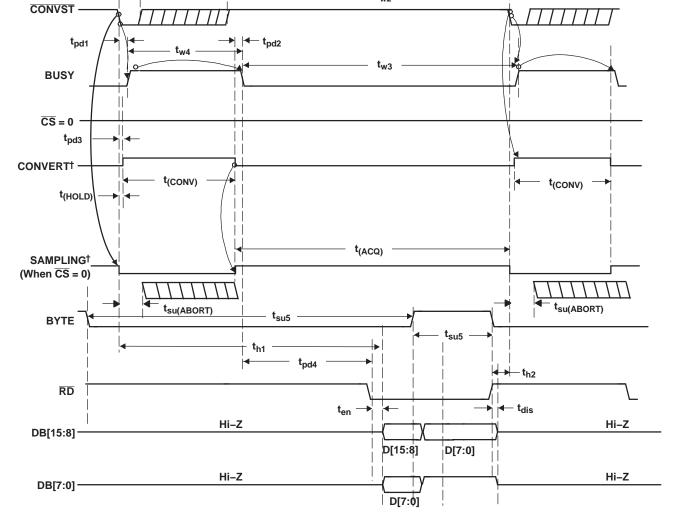




<sup>†</sup>Signal internal to device

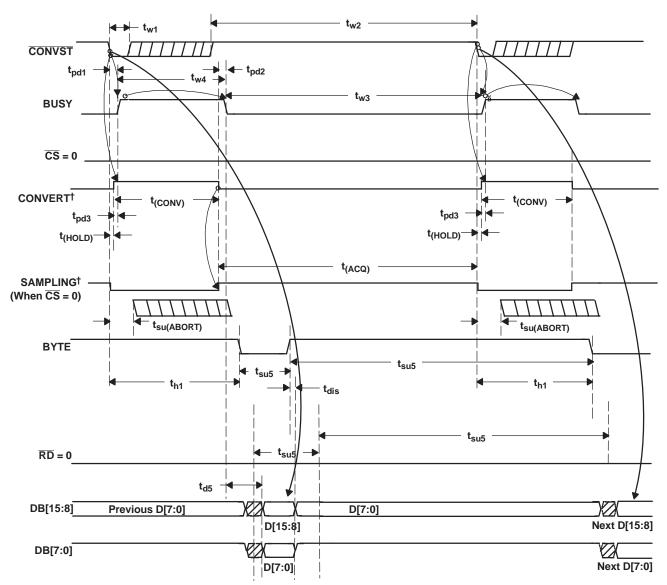
### Figure 3. Timing for Conversion and Acquisition Cycles With $\overline{CS}$ Toggling, $\overline{RD}$ Tied to BDGND

ADS8254 SLAS643-MARCH 2009


t<sub>w1</sub>

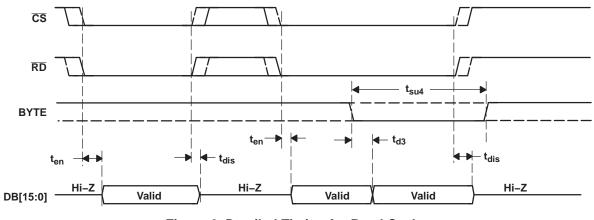
Texas

<sup>†</sup>Signal internal to device


### Figure 4. Timing for Conversion and Acquisition Cycles With $\overline{CS}$ Tied to BDGND, $\overline{RD}$ Toggling






t<sub>w2</sub>





<sup>†</sup>Signal internal to device

# Figure 5. Timing for Conversion and Acquisition Cycles With CS and RD Tied to BDGND - Auto Read



#### Figure 6. Detailed Timing for Read Cycles



**Multiplexer:** The multiplexer has two modes of sequencing namely auto sequencing and manual sequencing. Multiplexer mode selection and operation is controlled with the AUTO, C1, C2, C3, and MXCLK pins.

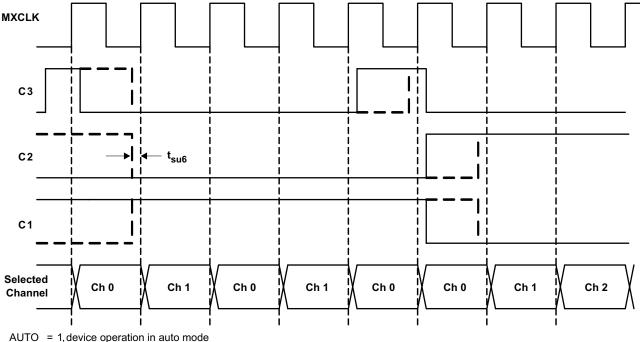
**Auto Sequencing:** A logic one level on the AUTO pin selects auto sequencing mode. It is possible to select the number of channels to be scanned (always starting from channel zero) in auto sequencing mode. Pins C1 and C2 select the channel count (last channel in the auto sequence).

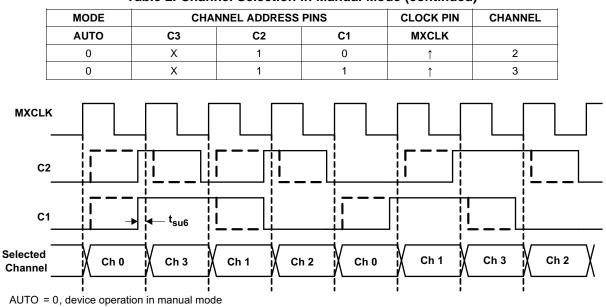
On every rising edge of MXCLK while C3 is at the logic zero level, the next higher channel (in ascending order) is selected. Channel selection rolls over to channel zero on the rising edge of MXCLK after channel selection reaches the *channel count* (last channel in the auto sequence selected by pins C1and C2).

Any time during the sequence the channel sequence can be reset to channel zero. A rising edge on MXCLK while C3 is at the logic one level resets channel selection to channel zero.

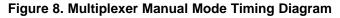
| CHANNEL COUNT PINS |    | IT PINS | CLOCK PIN | LAST CHANNEL IN SEQUENCE | CHANNEL SEQUENCE                          |
|--------------------|----|---------|-----------|--------------------------|-------------------------------------------|
| C3                 | C2 | C1      | MXCLK     | LAST CHANNEL IN SEQUENCE | CHANNEL SEQUENCE                          |
| 0                  | 0  | 0       | ↑         | 0                        | 0,0,0,0                                   |
| 0                  | 0  | 1       | ↑ (       | 1                        | 0,1,0,1,                                  |
| 0                  | 1  | 0       | ↑         | 2                        | 0,1,2,0,1,2,0                             |
| 0                  | 1  | 1       | ↑         | 3                        | 0,1,2,3,0,1,2,3,0                         |
| 1                  | Х  | Х       | ↑         | Х                        | $n \rightarrow 0$ (channel reset to zero) |
| MXCL               | <  |         |           |                          |                                           |
|                    |    |         |           |                          |                                           |

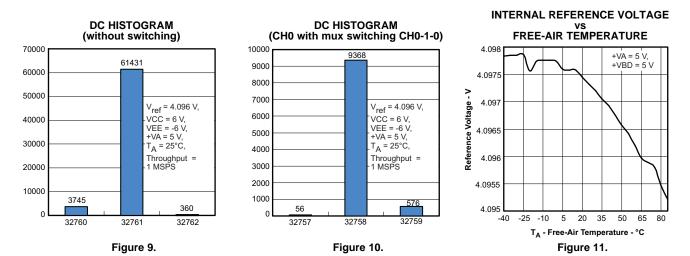
| Table 1. | Channel | Selection | in | Auto | Mode |
|----------|---------|-----------|----|------|------|
|          | Onumer  | OCICOLION |    | Auto | mouc |





Figure 7. Multiplexer Auto Mode Timing Diagram

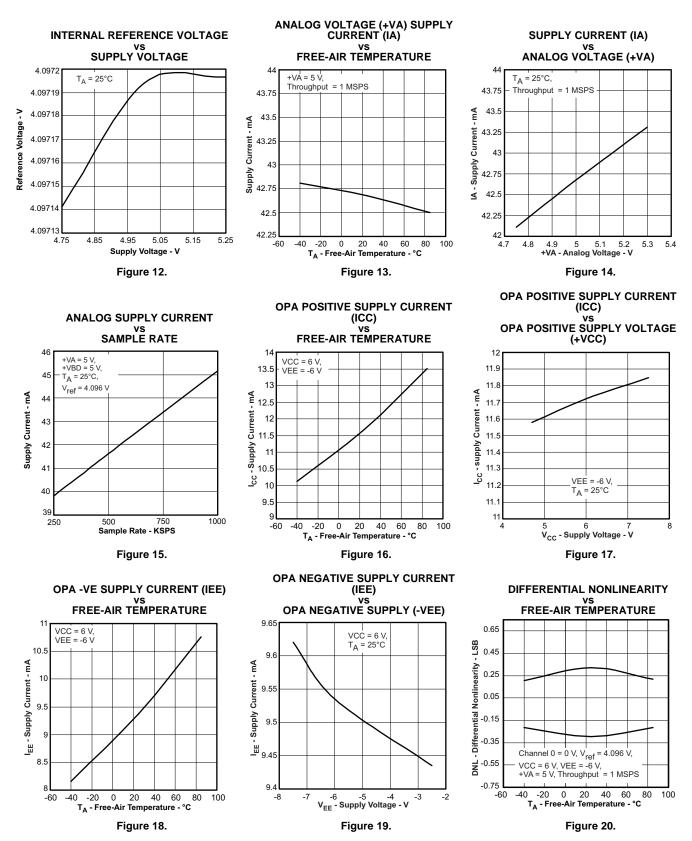
**Manual Sequencing:** A logic zero level on the AUTO pin selects manual sequencing mode. Pins C1and C2 set the channel address. On the rising edge of MXCLK, the addressed channel is connected to the ADC driver input.


| MODE | СНА | NNEL ADDRESS | CLOCK PIN | CHANNEL |   |
|------|-----|--------------|-----------|---------|---|
| AUTO | C3  | C2           | C1        | MXCLK   |   |
| 0    | Х   | 0            | 0         | 1       | 0 |
| 0    | Х   | 0            | 1         | ↑       | 1 |

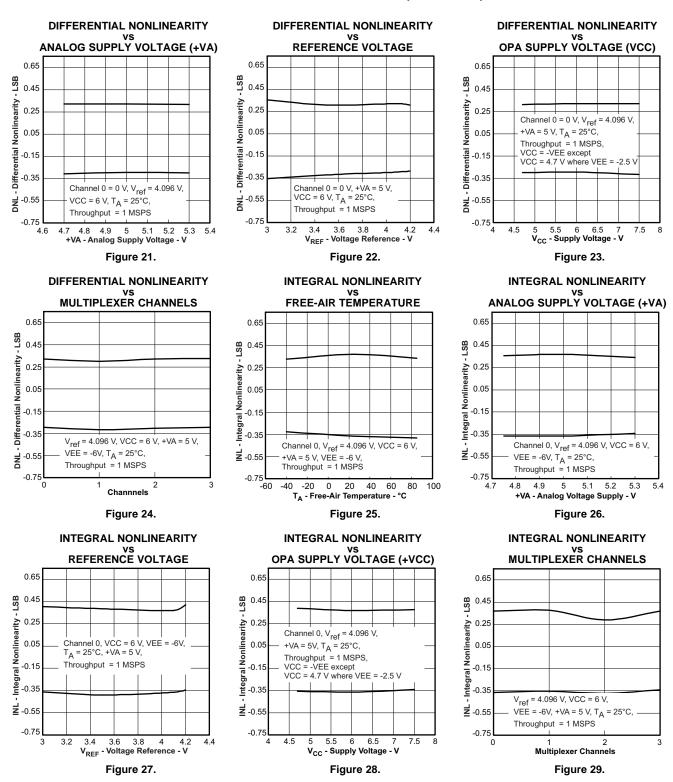

| Table 2. Channel Selection in Manual Mod | Table 2. | Channel | Selection | in | Manual Mode |
|------------------------------------------|----------|---------|-----------|----|-------------|
|------------------------------------------|----------|---------|-----------|----|-------------|



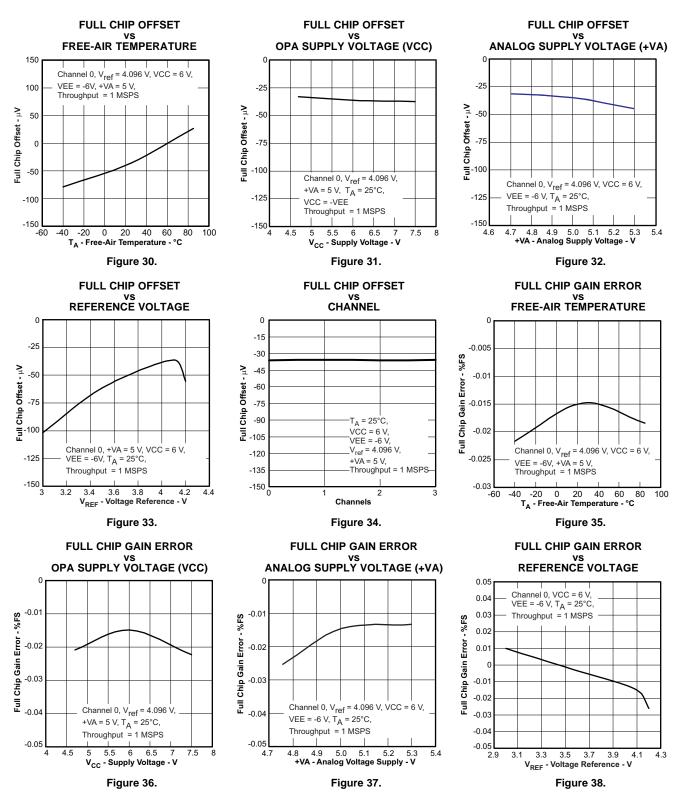



#### Table 2. Channel Selection in Manual Mode (continued)

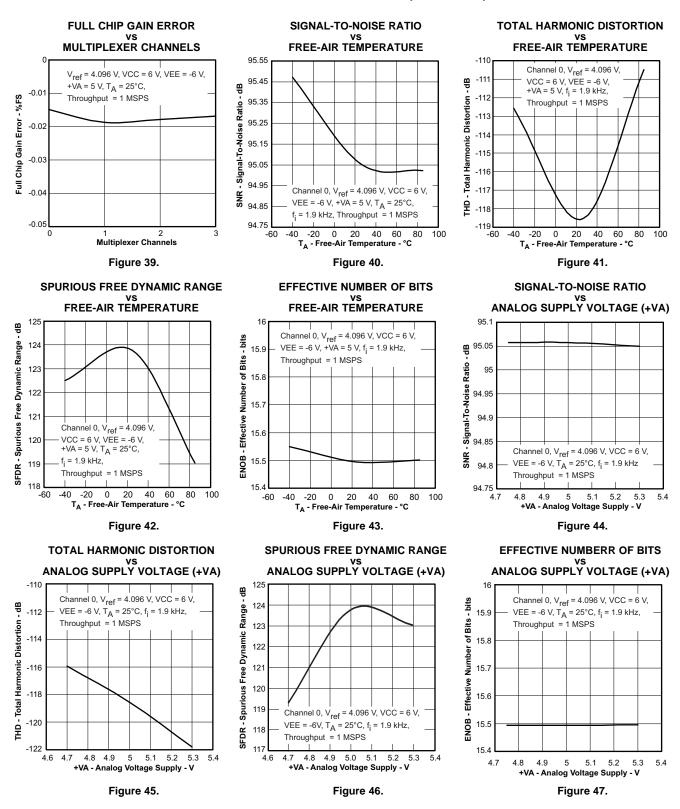





#### **TYPICAL CHARACTERISTICS**

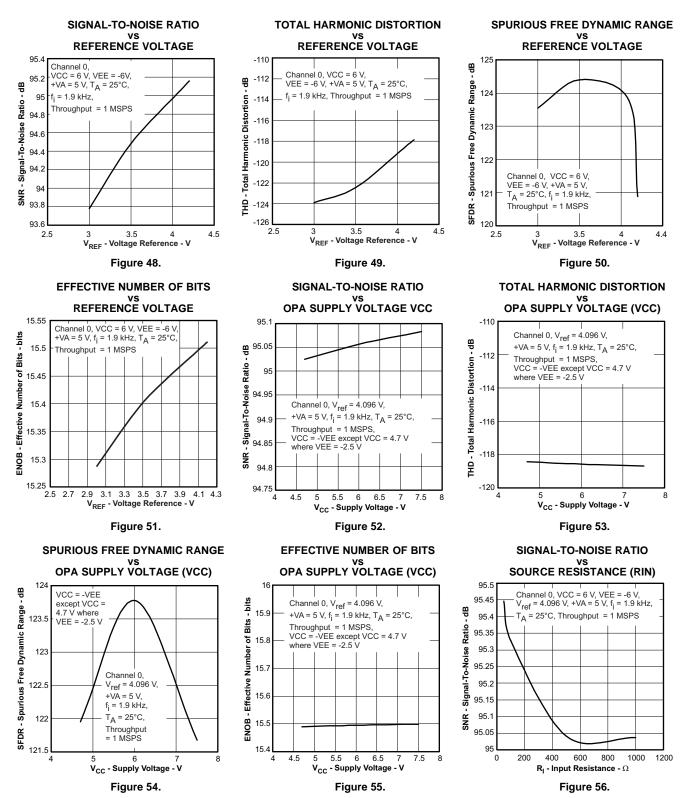




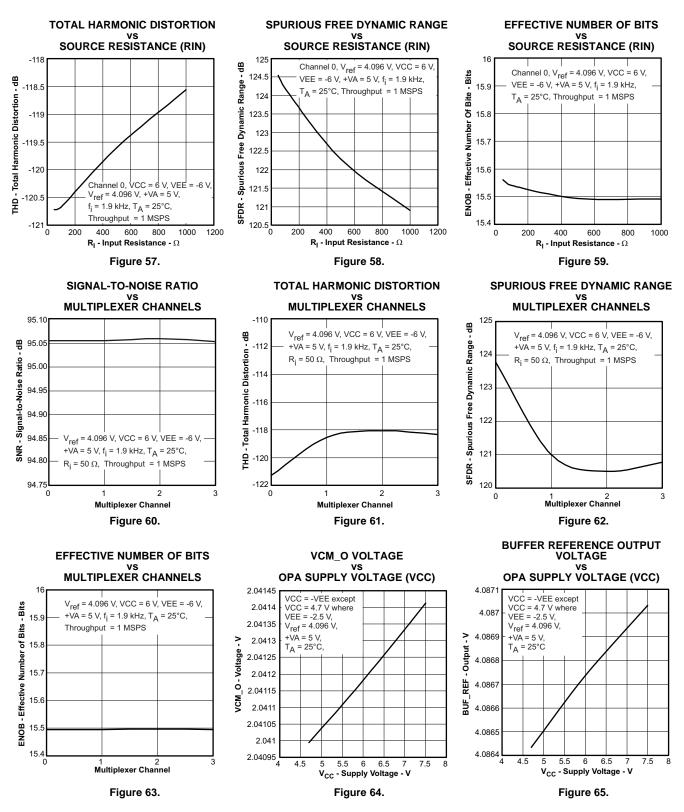




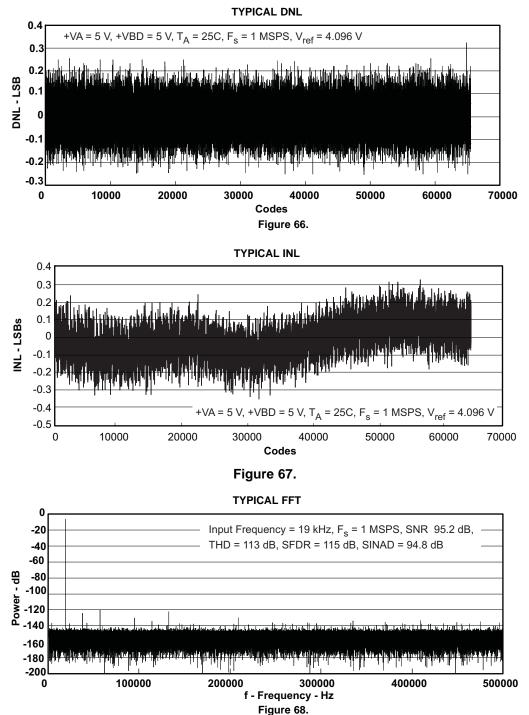








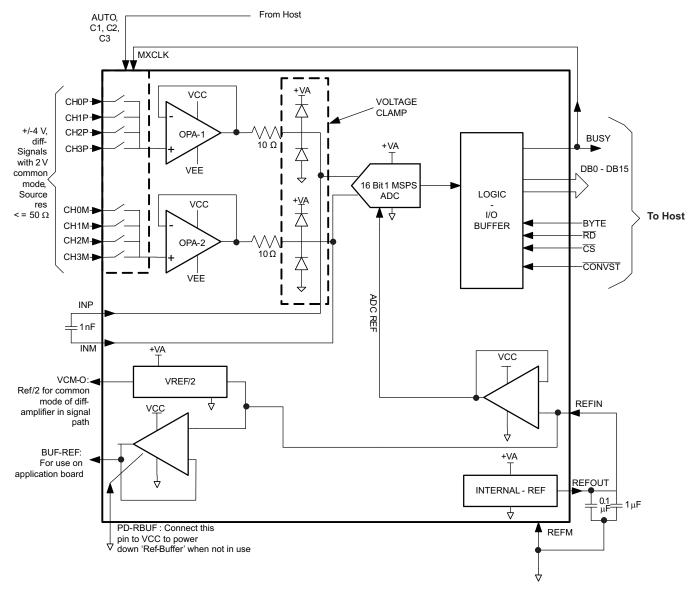








Texas Instruments

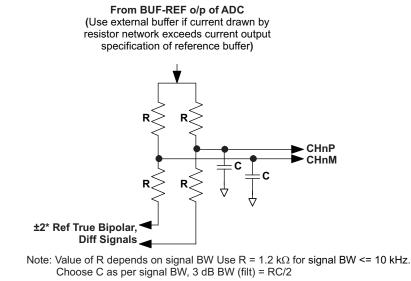







#### **APPLICATION INFORMATION**

As discussed before, the ADS8254 is 16-bit analog SoC that includes various blocks like a multiplexer, ADC driver, internal reference, internal reference buffer, buffered reference output, and Ref/2 output on-board. The following diagram shows the recommended analog and digital interfacing of the ADS8254.

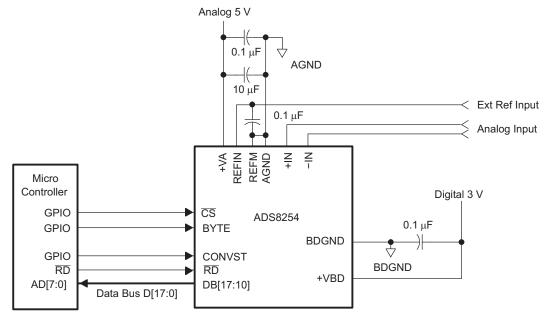

#### APPLICATION DIAGRAM

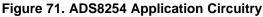


#### Figure 69. Analog and Digital Interface Diagram

As shown in Figure 69, the ADS8254 accepts unipolar differential analog inputs in the range of  $\pm V_{ref}$  with a common-mode voltage of  $V_{ref}/2$ . An application may require the interfacing of bipolar input signals. The following diagram shows the conversion of bipolar input signals to unipolar differential signals.







# Figure 70. Bipolar Input Signals to Unipolar Differential Signals Conversion

#### MICROCONTROLLER INTERFACING

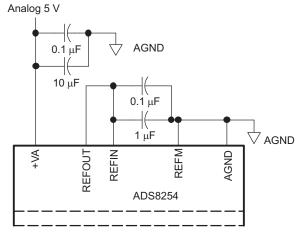

#### ADS8254 to 8-Bit Microcontroller Interface

Figure 71 shows a parallel interface between the ADS8254 and a typical microcontroller using an 8-bit data bus. The BUSY signal is used as a falling edge interrupt to the microcontroller.













#### PRINCIPLES OF OPERATION

The ADS8254 features a high-speed successive approximation register (SAR) analog-to-digital converter (ADC). The architecture is based on charge redistribution which inherently includes a sample/hold function. See Figure 71 for the application circuit for the ADS8254.

The conversion clock is generated internally. The conversion time of 650 ns is capable of sustaining a 1 MHz throughput.

When a conversion is initiated, the differential input on these pins is sampled on the internal capacitor array. While a conversion is in progress, both inputs are disconnected from any internal function.

#### REFERENCE

The ADS8254 can operate with an external reference with a range from 3.0 V to 4.2 V. The reference voltage on the input pin 10 (REFIN) of the converter is internally buffered. A clean, low noise, well-decoupled reference voltage on this pin is required to ensure good performance of the converter. A low noise band-gap reference like the REF5040 can be used to drive this pin. A 0.1- $\mu$ F decoupling capacitor is required between REFIN and REFM pins (pin 10 and pin 9) of the converter. This capacitor should be placed as close as possible to the pins of the device. Designers should strive to minimize the routing length of the traces that connect the terminals of the capacitor to the pins of the converter. An RC network can also be used to filter the reference voltage. A 100- $\Omega$  series resistor and a 0.1- $\mu$ F capacitor, which can also serve as the decoupling capacitor can be used to filter the reference voltage.

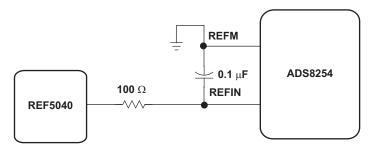



Figure 73. ADS8254 Using External Reference

The ADS8254 also has limited low pass filtering capability built into the converter. The equivalent circuitry on the REFIN input is as shown in Figure 74.

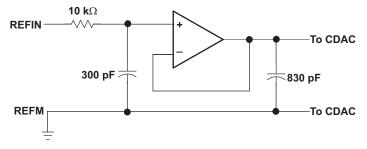



Figure 74. Simplified Reference Input Circuit

The REFM input of the ADS8254 should always be shorted to AGND. A 4.096-V internal reference is included. When the internal reference is used, pin 11 (REFOUT) is connected to pin 10 (REFIN) with an 0.1- $\mu$ F decoupling capacitor and 1- $\mu$ F storage capacitor between pin 11 (REFOUT) and pin 9 (REFM) (see Figure 72). The internal reference of the converter is double buffered. If an external reference is used, the second buffer provides isolation between the external reference and the CDAC. This buffer is also used to recharge all of the capacitors of the CDAC during conversion. Pin 11 (REFOUT) can be left unconnected (floating) if external reference is used (as shown in Figure 74).



#### **ANALOG INPUT**

The ADS8254 features an analog multiplexer, a differential, high-input impedance, unity-gain ADC driver, and a high-performance ADC. Typically it would require alot of care in the selection of the driving circuit components and board layout for high resolution ADC driving. However, an on-board ADC driver simplifies the job for the user. All that is needed is to decouple AINP and AINM with a 1-nF decoupling capacitor across these two terminals as close to the device as possible. The multiplexer inputs tolerate a source impedance of up to 50  $\Omega$  for the specified device performance at a 1-MSPS operating speed. This relaxes the constraints on the signal conditioning circuit. In the case of true bipolar input signals, it is possible to condition them with a resister divider as shown in Figure 70. The device permits use of 1.2-k $\Omega$  resistors for the divider with an effective source impedance of 600  $\Omega$  for signal BW less than 10 kHz. A suitable capacitor value can be used to limit signal BW which limits noise coming from the resistor divider network. Care must be taken about absolute analog voltage at the multiplexer input terminals. This voltage should not exceed VCC and VEE. The clamp at driver OPA limits the voltage applied to the ADC input.

### **Reading Data**

The ADS8254 outputs full parallel data in straight binary format as shown in Table 3. The parallel output is active when CS and RD are both low. There is a minimal quiet zone requirement around the falling edge of CONVST. This is 50 ns prior to the falling edge of CONVST and 40 ns after the falling edge. No data read should attempted within this zone. Any other combination of CS and RD sets the parallel output to 3-state. BYTE is used for multiword read operations. BYTE is used whenever lower bits on the bus are output on the higher byte of the bus. Refer to Table 3 for ideal output codes.

| DESCRIPTION                 | ANALOG VALUE                   | DIGITAL OUTPUT STRAIGHT BINA   |          |  |  |  |  |
|-----------------------------|--------------------------------|--------------------------------|----------|--|--|--|--|
| Full scale range            | $2 \times (+V_{ref})$          | DIGITAL OUTPUT STRAIGHT BINART |          |  |  |  |  |
| Least significant bit (LSB) | 2 × (+V <sub>ref</sub> )/65536 | BINARY CODE                    | HEX CODE |  |  |  |  |
| +Full scale                 | (+V <sub>ref</sub> ) – 1 LSB   | 0111 1111 1111 1111            | 7FFF     |  |  |  |  |
| Midscale                    | 0 V                            | 0000 0000 0000 0000            | 0000     |  |  |  |  |
| Midscale – 1 LSB            | 0 V – 1 LSB                    | 1111 1111 1111 1111            | FFFF     |  |  |  |  |
| Zero                        | -V <sub>ref</sub>              | 1000 0000 0000 0000            | 8000     |  |  |  |  |

#### Table 3. Ideal Input Voltages and Output Codes

The output data is a full 16-bit word (D15–D0) on DB15–DB0 pins (MSB–LSB) if BYTE is low.

The result may also be read on an 8-bit bus for convenience. This is done by using only pins DB15–DB8. In this case two reads are necessary: the first as before, leaving BYTE low and reading the 8 most significant bits on pins DB15–DB8, then bringing BYTE high. When BYTE is high, the low bits (D7–D0) appear on pins DB15–DB8.

This multiword read operation can be performed with multiple active  $\overline{RD}$  (toggling) or with  $\overline{RD}$  held low for simplicity. This is referred to as the AUTO READ operation.

|      | DATA READ OUT    |                 |  |  |  |  |
|------|------------------|-----------------|--|--|--|--|
| BYTE | PINS<br>DB15-DB8 | PINS<br>DB7–DB0 |  |  |  |  |
| High | D7–D0            | All One's       |  |  |  |  |
| Low  | D15–D8           | D7–D0           |  |  |  |  |

#### Table 4. Conversion Data Read Out

24-Jan-2013

### PACKAGING INFORMATION

| Orderable Device | Status | Package Type | •       | Pins | Package Qty | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp       | Op Temp (°C) | Top-Side Markings | Samples |
|------------------|--------|--------------|---------|------|-------------|----------------------------|------------------|---------------------|--------------|-------------------|---------|
|                  | (1)    |              | Drawing |      |             | (2)                        |                  | (3)                 |              | (4)               |         |
| ADS8254IBRGCR    | NRND   | VQFN         | RGC     | 64   | 2000        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-3-260C-168 HR | -40 to 85    | ADS8254<br>B      |         |
| ADS8254IBRGCT    | NRND   | VQFN         | RGC     | 64   | 250         | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-3-260C-168 HR | -40 to 85    | ADS8254<br>B      |         |
| ADS8254IRGCR     | NRND   | VQFN         | RGC     | 64   | 2000        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-3-260C-168 HR | -40 to 85    | ADS8254           |         |
| ADS8254IRGCT     | NRND   | VQFN         | RGC     | 64   | 250         | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-3-260C-168 HR | -40 to 85    | ADS8254           |         |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> Only one of markings shown within the brackets will appear on the physical device.

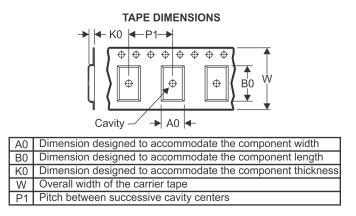
**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.





24-Jan-2013


# **PACKAGE MATERIALS INFORMATION**

www.ti.com

Texas Instruments

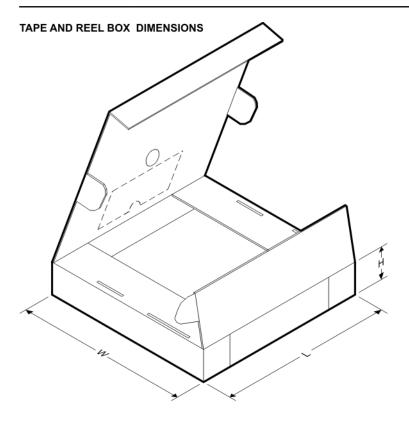
### **TAPE AND REEL INFORMATION**





# QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

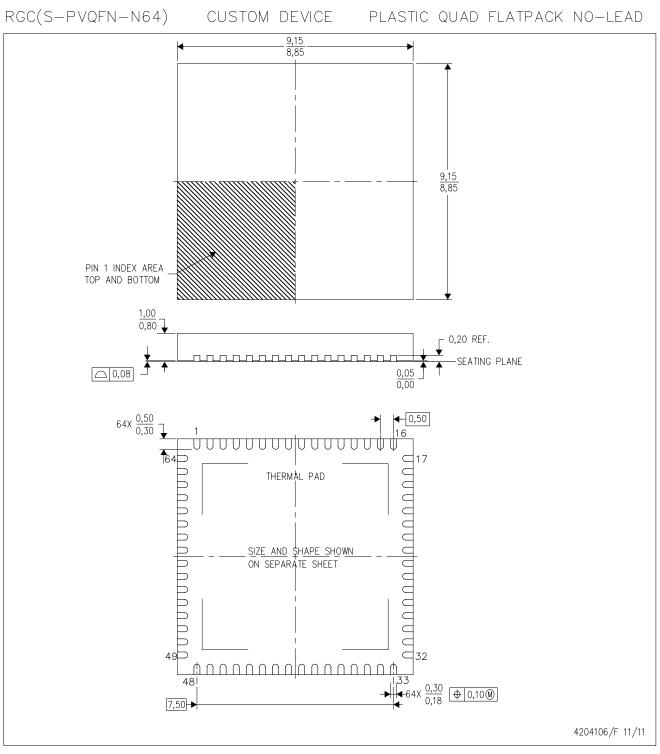



| Device        | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|---------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| ADS8254IBRGCR | VQFN            | RGC                | 64 | 2000 | 330.0                    | 16.4                     | 9.3        | 9.3        | 1.5        | 12.0       | 16.0      | Q2               |
| ADS8254IBRGCT | VQFN            | RGC                | 64 | 250  | 330.0                    | 16.4                     | 9.3        | 9.3        | 1.5        | 12.0       | 16.0      | Q2               |
| ADS8254IRGCR  | VQFN            | RGC                | 64 | 2000 | 330.0                    | 16.4                     | 9.3        | 9.3        | 1.5        | 12.0       | 16.0      | Q2               |
| ADS8254IRGCT  | VQFN            | RGC                | 64 | 250  | 330.0                    | 16.4                     | 9.3        | 9.3        | 1.5        | 12.0       | 16.0      | Q2               |

TEXAS INSTRUMENTS

www.ti.com

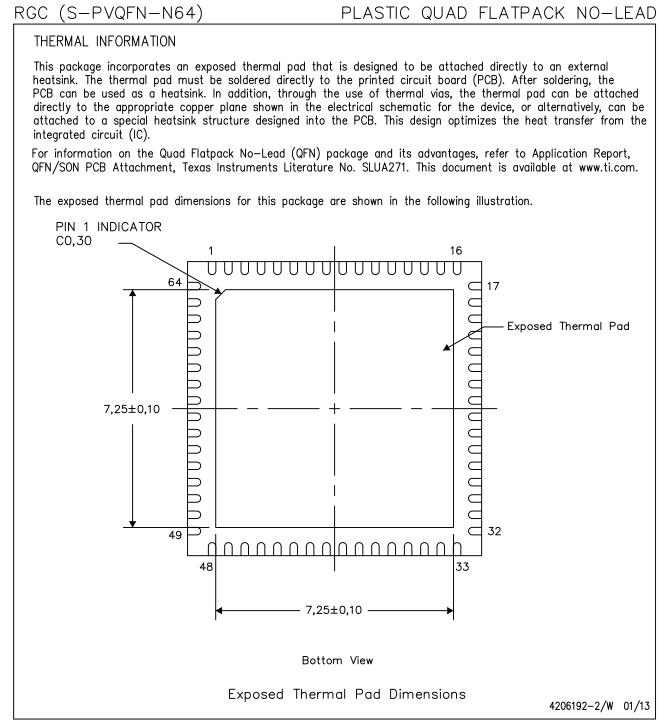
# PACKAGE MATERIALS INFORMATION


12-Feb-2013



\*All dimensions are nominal

| Device        | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---------------|--------------|-----------------|------|------|-------------|------------|-------------|
| ADS8254IBRGCR | VQFN         | RGC             | 64   | 2000 | 336.6       | 336.6      | 28.6        |
| ADS8254IBRGCT | VQFN         | RGC             | 64   | 250  | 336.6       | 336.6      | 28.6        |
| ADS8254IRGCR  | VQFN         | RGC             | 64   | 2000 | 336.6       | 336.6      | 28.6        |
| ADS8254IRGCT  | VQFN         | RGC             | 64   | 250  | 336.6       | 336.6      | 28.6        |

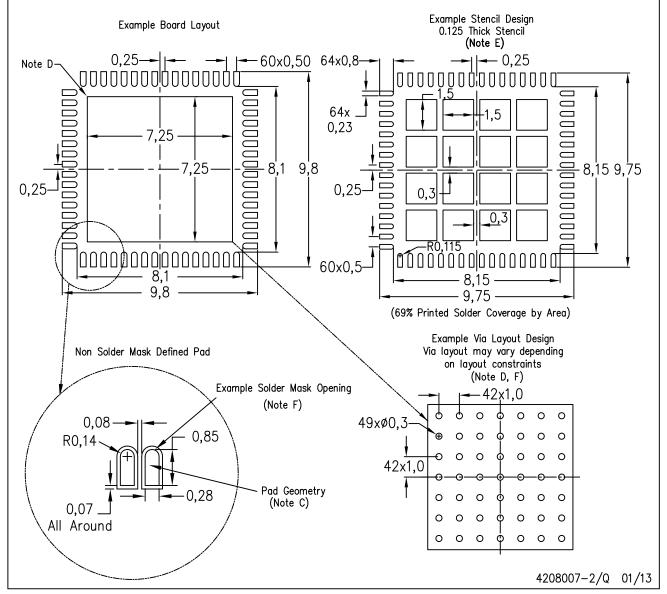

# **MECHANICAL DATA**



NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.






NOTE: A. All linear dimensions are in millimeters



RGC (S-PVQFN-N64)

# PLASTIC QUAD FLATPACK NO-LEAD



NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.

D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <a href="http://www.ti.com">http://www.ti.com</a>.

- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in thermal pad.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     |                          | Applications                  |                                   |
|------------------------------|--------------------------|-------------------------------|-----------------------------------|
| Audio                        | www.ti.com/audio         | Automotive and Transportation | www.ti.com/automotive             |
| Amplifiers                   | amplifier.ti.com         | Communications and Telecom    | www.ti.com/communications         |
| Data Converters              | dataconverter.ti.com     | Computers and Peripherals     | www.ti.com/computers              |
| DLP® Products                | www.dlp.com              | Consumer Electronics          | www.ti.com/consumer-apps          |
| DSP                          | dsp.ti.com               | Energy and Lighting           | www.ti.com/energy                 |
| Clocks and Timers            | www.ti.com/clocks        | Industrial                    | www.ti.com/industrial             |
| Interface                    | interface.ti.com         | Medical                       | www.ti.com/medical                |
| Logic                        | logic.ti.com             | Security                      | www.ti.com/security               |
| Power Mgmt                   | power.ti.com             | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Microcontrollers             | microcontroller.ti.com   | Video and Imaging             | www.ti.com/video                  |
| RFID                         | www.ti-rfid.com          |                               |                                   |
| OMAP Applications Processors | www.ti.com/omap          | TI E2E Community              | e2e.ti.com                        |
| Wireless Connectivity        | www.ti.com/wirelessconne | ectivity                      |                                   |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated