Am26LS31

Quad High Speed Differential Line Driver

DISTINCTIVE CHARACTERISTICS

- Output skew 2.0 ns typical
- Input to output delay 12 ns
- Operation from single +5 V supply
- 16-pin hermetic and molded DIP package
- Outputs won't load line when Vcc = 0
- Four line drivers in one package for maximum package density
- Output short-circuit protection

- Complementary outputs
- Meets the requirements of EIA standard RS-422
- High output drive capability for 100 Ω terminated transmission lines
- Available in military and commercial temperature range
- Advanced low-power Schottky processing

GENERAL DESCRIPTION

The Am26LS31 is a quad-differential line driver, designed for digital data transmission over balanced lines. The Am26LS31 meets all the requirements of EIA standard RS-422 and federal standard 1020. It is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines.

The circuit provides an enable and disable function common to all four drivers. The Am26LS31 features

BLOCK DIAGRAM

3-state outputs and logical OR-ed complementary enable inputs. The inputs are all LS compatible and are all one unit load.

The Am26LS31 is constructed using advanced lowpower Schottky processing.

05392-001A

RELATED P	RODUCTS	
Part No.	Description	
26LS30	Dual Differential RS-422 Party Line/Quad Single Ended RS-423 Line Driver	
26LS32	Quad Differential RS-422 Line Receiver	

4–28

Publication# 05392 Rev. B Amendment/0 Issue Date: May 1991

CONNECTION DIAGRAMS Top View

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations					
AM26LS31	PC, PCB DC, DCB SC				

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

MILITARY ORDERING INFORMATION SMD/DESC Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. Standard Military Drawing (SMD)/DESC products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations					
5962-7802301	MEA, MFA, M2A				

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, or to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

MILITARY ORDERING INFORMATION APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) is formed by a combination of:

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, or to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

Am26LS31

/BFA.

/B2A

Shield or Common Ground Return

05392-004A

AMD

PRELIMINARY

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	−65 to +150°C
Supply Voltage	-0.5 to 7.0 V
DC Input Voltage	-1.5 to 7.0 V
DC Output Voltage	–0.5 to Vcc max

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (TA) Supply Voltage (Vcc)	0 to +70°C +4.75 to +5.25 V
Military (M) Devices	
Temperature	–55 to +125°C
Supply Voltage (Vcc)	+4.5 to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions (Note 2)		Min.	Typ. (Note 1)	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min; Ioн = -20 mA		2.5	3.2		٧
Vol	Output LOW Voltage	Vcc = Min; loL	= 20 mA		0.32	0.5	v
Viн	Input HIGH Voltage	Vcc = Min; (No	ote 3)	2.0			V
ViL	Input LOW Voltage	Vcc = Max. (N	ote 3)			0.8	v
ln_	Input LOW Current	Vcc = Max.,VIN	I = 0.4 V		-0.20	-0.36	mA
Ін	Input HIGH Current	Vcc = Max., VIN	I = 2.7 V		0.5	20	μA
h	Input Reverse Current	$V_{CC} = Max., V_{IN} = 7.0 V$				0.1	mA
lo	Off-State (High-Imped- ance) Output Current	Vcc = Max.	V ₀ = 2.5 V V ₀ = 0.5 V			20 20	μA
Vi	Input CLAMP Voltage	Vcc = Min., I _{IN} = -18 mA			-0.8	-1.5	V
IOFF	Power off leakage Current	Vcc = 0 V	Vout = 6 V Vout =25 V			100 -100	μA
lsc	Output Short Circuit Current	Vcc = Max., (Note 4)		-30	-60	-150	mA
lcc	Power Supply Current	Vcc = Max., all outputs disabled			60	80	mA
AC Parame	ters $V_{CC} = 5.0 V$, $T_A = 25$	°C					
tplh	Input to Output	Vcc = 5.0 V, T/	$a = 25^{\circ}C$, Load = Note 2		12	20	ns
t PHL	Input to Output	Vcc = 5.0 V, T _A = 25°C, Load = Note 2			12	20	ns
SKEW	Output to Output	Vcc = 5.0 V, T _A = 25°C, Load = Note 2			2.0	6.0	ns
tız	Enable to Output	V _{CC} = 5.0 V, T _A = 25°C, C _L = 10 pF R _{L1} = 180 Ω, R _{L2} = 75 Ω			23	35	ns
tнz	Enable to Output	Vcc = 5.0 V, TA RL1 = 180 Ω, F		17	30	ns	
tzl	Enable to Output	Vcc = 5.0 V, T _A = 25°C, Load = Note 2			35	45	ns
tzн	Enable to Output	Vcc = 5.0 V, TA = 25°C, Load = Note 2			30	40	ns

Notes:

1. All typical values are Vcc = 5.0 V, TA = 25° C.

2. CL = 30 pF, VIN = 1.3 V to VOUT = 1.3 V, VPULSE = 0 V to +3.0 V, RL1 = 180 Ω , RL2 = 75 Ω .

3. Input thresholds are tested during DC tests and may be done in combination with testing of other DC parameters.

4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

Parameter Symbol	Parameter Description	Test Conditions	Min.	Typ. (Note 1)	Max.	Unit
AC Parame	ters (Commercial) V _{CC} = 4.7	5 V – 5.25 V; T _A = 0°C – 70°C				
tрĻн	Propagation Delay from Input to Output	$C_L = 30 \text{ pF}, R_{L1} = 180 \Omega, R_{L2} = 75 \Omega$		18	30	ns
T PHL	Propagation Delay from Input to Output	$C_L = 30 \text{ pF}, \text{ R}_{L1} = 180 \Omega, \text{ R}_{L2} = 75 \Omega$		18	30	ns
tskew	Output to Output	$C_L = 30 \text{ pF}, \text{ R}_{L1} = 180 \Omega, \text{ R}_{L2} = 75 \Omega$		3.0	9.0	ns
t PLZ	Propagation Delay from Enable to Output	$C_L = 10 \text{ pF}, \text{ R}_{L1} = 180 \Omega, \text{ R}_{L2} = 75 \Omega$		35	53	ns
tрнz	Propagation Delay from Enable to Output	$C_L = 10 \text{ pF}, \text{ R}_{L1} = 180 \Omega, \text{ R}_{L2} = 75 \Omega$		25	45	ns
t PZL	Propagation Delay from Enable to Output	$C_L = 30 \text{ pF}, \text{ R}_{L1} = 180 \Omega, \text{ R}_{L2} = 75 \Omega$		53	68	ns
tрzн	Propagation Delay from Enable to Output	$C_L = 30 \text{ pF}, \text{ R}_{L1} = 180 \Omega, \text{ R}_{L2} = 75 \Omega$		45	60	ns
AC Parame	ters (Military) Vcc = 4.75 V -	$5.25 \text{ V}; \text{ T}_{\text{A}} = -55^{\circ}\text{C} - +125^{\circ}\text{C}$				
tplh	Propagation Delay from Input to Output	$C_L = 30 \text{ pF}, \text{ R}_{L1} = 180 \Omega, \text{ R}_{L2} = 75 \Omega$		18	30	ns
t PHL	Propagation Delay from Input to Output	$C_L = 30 \text{ pF}, \text{ R}_{L1} = 180 \Omega, \text{ R}_{L2} = 75 \Omega$		18	30	ns
t skew	Output to Output	$C_L = 30 \text{ pF}, \text{ R}_{L1} = 180 \Omega, \text{ R}_{L2} = 75 \Omega$		3.0	9.0	ns
t PLZ	Propagation Delay from Enable to Output	$C_L = 10 \text{ pF}, \text{ R}_{L1} = 180 \Omega, \text{ R}_{L2} = 75 \Omega$		35	53	ns
tрнz	Propagation Delay from Enable to Output	$C_L = 10 \text{ pF}, \text{ R}_{L1} = 180 \Omega, \text{ R}_{L2} = 75 \Omega$		25	45	ns
tpzL	Propagation Delay from Enable to Output	C _L = 30 pF, R _{L1} = 180 Ω, R _{L2} = 75 Ω		53	68	ns
tрzн	Propagation Delay from Enable to Output	$C_L = 30 \text{ pF}, \text{ R}_{L1} = 180 \Omega, \text{ R}_{L2} = 75 \Omega$		45	60	ns

4--35

PERFORMANCE CURVES

05392-005A

VOUT (V)

05392-006A

KEY TO SWITCHING WAVEFORMS

Notes:

- 1. Diagram shown for Enable LOW.
- 2. S1 and S2 of Load Circuit are closed except where shown.
- 3. Pulse Generator for All Pulses: Rate \leq 1.0 MHz; Zo = 50 Ω ; tr \leq 15 ns; tr \leq 6.0 ns.

SWITCHING TEST CIRCUIT

EQUIVALENT CIRCUIT (1/4 Am26LS31)

4--38