

Four-Port, Dual-Access Register File

Am29334

DISTINCTIVE CHARACTERISTICS

Fast

LIBERTY CHIP™ [C

> With an access time of 24ns, the Am29334 supports 80-90ns microcycle time when used with the Am29300 Family for 32-bit systems.

 64 x 18 Bits Wide Register File The Am29334 is a high-performance, high-speed, dualaccess RAM with two READ ports and two WRITE ports.

Cascadable

The Am29334 is cascadable to support either wider word widths, deeper register files, or both.

- Simplified Timing Control Control for write enable timing and for on-chip read/ write address multiplexer are derived from a singlephase clock input.
- Byte Parity Storage Width of 18 bits facilitates byte parity storage for each port and provides consistency with the Am29332 32-bit ALU.
- Byte Write Capability
 Individual byte-write enables allows byte or full word
 write.

GENERAL DESCRIPTION

The Am29334 is a 64-word deep and 18-bit wide dualaccess register file designed to support other members of the Am29300 Family by providing high-speed storage. It has two write and two read ports for data and four 6-bit address ports. Two address ports are associated with each pair of read and write data ports, one to read data and the other to write. The device is capable of performing two reads and two writes in one cycle. The 18-bit wide register file allows storage of byte parity to support parity check and generate in the Am29332 32-bit ALU. Independent control for each read and write data port allows the Am29334 to be used as a high-speed shared memory or as a mailbox for a multiprocessor system. The device is designed with an access time of 24ns. It is housed in a 120 lead pin grid array package.

dvanced Micro Devices

January 1986

RELATED PRODUCTS

Part No.	Description
Am29323	32 x 32 Parallel Multiplier
Am29325	32-Bit Floating Point Processor
Am29331	16-Bit Microprogram Sequencer
Am29332	32-Bit Extended Function ALU

CONNECTION DIAGRAM

CD009170

TABLE OF INTERCONNECTIONS PIN PIN PAD PIN PIN PAD PIN PIN PAD PIN PAD PIN NUMBER NUMBER NUMBER NUMBER NAME NUMBER NUMBER NAME NUMBER NUMBER NAME NAME A-1 C-1 N-13 M-13 31 61 B-1 ABB1 91 Awb1 ARA2 AWA2 C-2 K-11 92 L-12 K-12 ARA1 62 ARBO AWA1 2 AWBO 32 D_{B16} 93 K-13 63 D-2 3 D-3 D_{B17} 33 ARAO AWA0 H-13 D_{A0} D_{A1} E-3 94 D-1 D_{B15} 34 H-11 64 DB14 4 5 6 DA3 65 E-2 DB12 95 H-12 E-1 35 L-13 D_{B13} D_{A2} F-1 36 G-12 D_{A5} 66 F-2 DB10 96 G-13 D_{B11} D_{A4} 67 G-2 97 G-3 37 D_{A6} 7 D_{A7} 98 E-11, E-12, E-13 GND J-11, J-12, J-13 68 Н-3 Vcc GND 8 F-3 38 Vcc 99 G-1 39 DAG 69 H-1 D_{A8} 9 100 F-11 G-11 70 J-3 DB8 10 D_{B9} 40 DA11 H-2 DA10 71 72 C-13 F-12 101 F=13 J-2 D_{B6} 41 DA13 DA12 11 J-1 D_{B7} DB4 102 D-11 DA14 K-2 12 к-з D_{B5} 42 DA15 D-12 D-13 13 K-1 43 DA17 73 L-3 D_{B2} 103 D_{B3} DA16 ARA5 WEAC C-12 LEA 14 L-1 D_{B1} 44 C-11 74 L-2 D_{B0} 104 B-13 M-2 45 B-12 75 M-1 ARB5 WEBC 105 AWA5 WEAL 15 LEB WEAH 76 106 A-12 N-2 16 N-1 AWB5 WEBL 46 A-13 WEBH B-11 M-3 107 77 17 N-3 47 A-11 ARB4 AWB4 M-4 108 B-10 Y_{A0} 18 L-4 Y_{B17} 48 C-10 Y_{A1} 78 Y_{B16} N-4 A-10 79 L-5 Y_{B14} 109 C-9 19 49 Y_{A3} Y_{A2} GND_A Y_{B15} Y_{B13} 20 N-5 GNDA 50 A-9 80 M-5 110 B-9 Y_{A4} A-8 81 M-6 Y_{B11} 111 B-8 21 N-6 Y_{B12} 51 Y_{A6} Y_{A5} 112 B-7 Y_{B10} OE_B C-7 82 M-7 Y_{B9} Y_{A7} OE_A 22 L-7 52 Y_{A8} C-6 C-8 Ŀ-8 VCCA 113 23 L-6 53 VCCA 83 24 25 **Y**A10 84 N-8 Y_{B7} 114 A-6 N-7 54 A-7 Y_{B8} Y_{A9} B-6 85 L-9 Y_{B5} 115 C-5 M-8 55 Y_{B6} GND_A YA12 YA11 Y_{B4} A-5 C-4 86 M-9 116 B-5 26 N-9 56 **GND**_A YA13 B-4 27 L-10 Y_{B3} 57 YA15 87 M-10 Y_{B2} 117 YA14 C-3 Y_{B0} 118 28 N-10 Y_{B1} 58 A-4 YA17 88 L-11 YA16 B-3 29 N-11 59 A-3 A_{RB3} 89 M-11 ARA4 119 Aw_{B3} AWA4 B-2 N-12 120 A-2 60 90 ARA3 130 M-12 ARB2 AWB2 Awa3

Notes: 1. V_{CC} and GND are power for internal ECL chip logic.

2. V_{CCA} and GNDA are power for output TTL buffers.

3. Pins E-1, E-12 and E-13 are physically shorted together in the package.

4. Pins J-11, J-12 and J-13 are physically shorted together in the package.

ARB0 – ARB5 Addresses (Inputs, Active HIGH) The six-bit field presented at the ARB inputs, selects one of 64 memory words for presentation to the YB Data Latch.

- $Y_{A0} Y_{A17}$ Data Latch (Outputs, Three-State) The 18-bit Y_A Data Latch Outputs.
- Y_{B0} Y_{B17} Data Latch (Outputs, Three-State) The 18-bit Y_B Data Latch Outputs.
- Awao Awa5 Addresses (Inputs, Active HIGH) The six-bit field presented at the AW_A inputs, selects one of 64 words for writing new data from the D_A inputs.
- Awbo Awbo Awbo Addresses (Inputs, Active HIGH) The six-bit field presented at the AWb inputs, selects one of 64 words for writing new data from the Db inputs.

D_{A0} – D_{A17} Data (Inputs, Active HIGH)

New data is written into the word, selected by the AW_A address inputs, through these inputs.

D_{B0} – D_{B17} Data (Inputs, Active HIGH)

New data is written into the word, selected by the AW_B address inputs, through these inputs.

LEA YA Data Latch Enable (Input)

The LE_A input controls the Latch for the Y_A output port. When LE_A is HIGH, the latch is open (transparent), and data from the RAM, as selected by the AR_A address inputs, is present at the Y_A outputs. When LE_A is LOW, the Latch is closed and it retains the last data read from the RAM selected by the AR_A address inputs.

LEB YB Data Latch Enable (Input)

The LE_B input controls the Latch for the Y_B output port. When LE_B is HIGH, the Latch is open (transparent), and data from the RAM, as selected by the AR_B address inputs, is present at the Y_B outputs. When LE_B is LOW, the Latch is closed and it retains the last data read from the RAM selected by the AR_B address inputs.

OEA YA Output Enable (Input, Active LOW)

When \overline{OE}_A is LOW, data in the Y_A Data Latch is present at the Y_A outputs. If \overline{OE}_A is HIGH, Y_A outputs are in the high-impedance (off) state.

OEB YB Output Enable (Input, Active LOW)

When \overline{OE}_B is LOW, data in the Y_B Data Latch is present at the Y_B outputs. If \overline{OE}_B is HIGH, Y_B outputs are in the high-impedance (off) state.

WEAC Write Enable (Input, Active LOW)

When \overline{WE}_{AC} is LOW together with \overline{WE}_{AH} and \overline{WE}_{AL} , new data is written into the word selected by the AW_A address inputs. When \overline{WE}_{AC} is HIGH, no data is written into the RAM through the A port.

WEBC Write Enable (Input, Active LOW)

When \overline{WE}_{BC} is LOW together with \overline{WE}_{BH} and \overline{WE}_{BL} , new data is written into the word selected by the AW_B address inputs. When \overline{WE}_{BC} is HIGH, no data is written into the RAM through the B port.

WEAH High-Byte Write Enable (Input, Active LOW)

When $\overline{\text{WE}}_{AH}$ is LOW together with $\overline{\text{WE}}_{AC}$, new data is written into the high byte of the word selected by the AW_A address inputs. When $\overline{\text{WE}}_{AH}$ is HIGH, no data is written into the high byte of the word selected by the AW_A address inputs.

WE_{BH} High-Byte Write Enable (Input, Active LOW)

When \overline{WE}_{BH} is LOW together with \overline{WE}_{BC} , new data is written into the high byte of the word selected by the AW_B address inputs. When \overline{WE}_{BH} is HIGH, no data is written into the high byte of the word selected by the AW_B address inputs.

 $\label{eq:weak-state-s$

 $\label{eq:weight} \begin{array}{|c|c|c|c|c|} \hline WE_{BL} & Low-Byte Write Enable (Input, Active LOW) \\ \hline When WE_{BL} is LOW together with WE_{BC}, new data is written into the low byte of the word selected by the AWB address inputs. When WE_{BL} is HIGH, no data is written into the low byte of the word selected by the AWB address inputs. \\ \end{array}$

FUNCTIONAL DESCRIPTION

The part has two read ports ($Y_{A0} - Y_{A17}$, $Y_{B0} - Y_{B17}$), two write ports ($D_{A0} - D_{A17}$, $D_{B0} - D_{B17}$), four addresses (ARA0 - ARA5, AWA0 - AWA5, ARB0 - ARB5, AWB0 - AWB5), two latch enables (LE_A, LE_B), two output enables (\overline{OE}_A , \overline{OE}_B), and six write enables \overline{WE}_{AC} , \overline{WE}_{AL} , \overline{WE}_{AH} , \overline{WE}_{BC} , \overline{WE}_{BL}) that allow writing of data into one or both bytes of a word. The separate read and write addresses facilitate creation of three- and four-address architectures and allow address set-up and RAM access to overlap.

Since the A and B sides are identical, only operation of the A side is described. The address multiplexer provides the RAM with the address A_{RA} when \overline{WE}_{AC} = HIGH and with the address A_{WA} when \overline{WE}_{AC} = LOW. Internally the part is designed so that there is no race condition between the write address and the write enable. In most cases \overline{WE}_{AC} and LE_A will be connected to the clock as shown in Figure 2 so that reading will take place in the first part of a clock cycle and writing in the last part. The latch at the output of the RAM is transparent when LE_A = HIGH and retains the data when LE_A = LOW. The latch has a three-state output Y_A controlled by \overline{OE}_A . Each word is split into two bytes of nine bits that can be individually written. The low byte covers bits 0 through 8 and the high byte covers bits 9 through 17. One or both bytes of the data at D_A are written into the location given by A_{WA}

when the common write enable (\overline{WE}_{AC}) and the appropriate byte write enables (\overline{WE}_{AL} and \overline{WE}_{AH}) are active. Two special cases arise. First, if a location is written into and read at the same time, the value read is the value being written. Second, if a location is written into from both the A side and the B side, the value written is undefined, but the operation is not harmful.

Extension To Four Read Ports and Two Write Ports

A RAM with four read ports and two write ports can be made by using two dual access RAMs and connecting each of the write ports, write addresses, and write enables in parallel for the two devices. As an example, this RAM may provide data storage for a data ALU and an address adder as shown in Figure 3. A location should not be read before it has been written into for the first time as the contents of the two dual access RAMs are likely to be different upon power-up.

32 Words x 36 Bits Single Access Ram

It is possible to convert the 64 words x 18 bits dual access RAM into a 32 word x 36 bit single access RAM by storing the upper half of the 36 bits in the upper half of the 64 words and address these from the A side and storing the lower half of the 36 bits in the lower half of the 64 words and address these from the B side. This arrangement, which is shown in Figure 4, does not change the capacity of the RAM, but the dual access is lost.

AF003480

Figure 1. Am29300 Family High Performance System Block Diagram

ABSOLUTE MAXIMUM RATINGS

OPERATING RANGES

Storage Temperature-65 to +150°C Temperature Under Bias - T_C-55 to +125°C Supply Voltage to Ground Potential

Continuous-0.5 to +7.0 V DC Voltage Applied to Outputs for High State -0.5 V to +V_{CC} Max

DC Input Voltage -0.5 to +5.5 V

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

DC CHARACTERISTICS over operating range unless otherwise specified

Commercial (C) Devices	
Temperature (T _A)	0 to +70°C
Supply Voltage	+4.75 to +5.25 V
Air Velocity	200 linear feet per minute

Operating ranges define those limits between which the functionality of the device is guaranteed.

Test Conditions Тур. **Parameters** Description Min. Max. Units (Note 1) (Note 2) $V_{CC} = Min.$ $V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -3 \text{ mA}$ VOH Output HIGH Voltage 2.4 Volts V_{CC} = Min. $V_{IN} = V_{IL}$ or V_{IH} $I_{OL} = 16 \text{ mA}$ VOL Output LOW Voltage 0.5 Volts Guaranteed Input Logical HIGH Voltage for All Inputs VIH Input HIGH Level 2.0 Volte Guaranteed Input Logical VIL Input LOW Level 0.8 Volts LOW Voltage for All Inputs $V_{CC} = Min.$ $I_{IN} = -18 \text{ mA}$ VI Input Clamp Voltage -1.2 Volts $V_{CC} = Max.$ $V_{IN} = 0.5 V$ Input LOW Current 1_L -0.5 mΑ V_{CC} = Max. hн Input HIGH Current 50 μA $V_{IN} = 2.4 V$ $V_{CC} = Max.$ $V_{IN} = 5.5 V$ h. Input HIGH Current 1.0 mΑ $V_0 = 2.4 V$ Off State (High-Impedance) 50 lozн V_{CC} = Max. μA Output Current **IOZL** $V_0 = 0.5 V$ -50 Output Short Circuit Current $V_{CC} = Max.$ to +0.5 V V_O = 0.5 V Isc - 15 -50mΑ (Note 3) $T_A = 0$ to $+70^{\circ}C$ 950 COM'L Only $T_A = +70^{\circ}C$ 850 Power Supply Current Icc V_{CC} = Max mΑ (Note 4) $T_A = -55 \text{ to } + 125^{\circ}\text{C}$ MIL Only $T_{A} = + 125^{\circ}C$

Notes: 1. For conditions shown as Min. or Max., use the appropriate value specified under Operating Ranges for the applicable device type.

Typical values are for V_{CC} = +25°C ambient and maximum loading. 3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

4. Measured with all inputs HIGH.

Parameters	From	То	Test Conditions	Delay (ns)
Access Time	A _{RA} or A _{RB}	Y _A or Y _B	LE _A or LE _B = H	24
Turn-On Time	\overline{OE}_A or $\overline{OE}_B = L$	Y _A or Y _B		20
Turn-Off Time**	\overline{OE}_A or $\overline{OE}_B = H$	Y_A or $Y_B = Z$	C _L = 5 pF load	16
Enable Time	LE_A or $LE_B = H$	Y _A or Y _B		16
Transparency	\overline{WE}_A or $\overline{WE}_B = L$	Y _A or Y _B	LE _A or LE _B = H	32
Transparency	D _A or D _B	Y _A or Y _B	$\frac{LE_A}{WE_A} \text{ or } \frac{LE_B}{WE_B} = L$	33
	Mi	nimum Setup and	Hold Time	
Parameters	For		WRT	Delay (ns)
Data Setup	D _A or D _B	WEA or WEB	(L TO H)	9
Data Hold	D _A OR D _B	WEA or WEB	(L TO H)	2
Address Setup	A _{WA} or A _{WB}	WE _A or WE _B	WE _A or WE _B (H TO L)	
Address Hold	A _{WA} or A _{WB}	\overline{WE}_A or \overline{WE}_B	(L TO H)	3
Address Setup	A _{RA} or A _{RB}	LE _A or LE _B (LE _A or LE _B (H TO L)	
Address Hold	A _{RA} or A _{RB}	LE _A or LE _B (LE _A or LE _B (H TO L)	
Latch close before Write	LE _A or LE _B (H TO L)	\overline{WE}_{A} or \overline{WE}_{B}	WE _A or WE _B (H TO L)	
		Minimum Pulse	Widths	
Parameters	Input		Pulse	
Write Pulse	\overline{WE}_A or \overline{WE}_B	HIGH LOW -	HIGH – LOW – HIGH	
Latch Data Capture	LE _A or LE _B	LOW HIGH	LOW – HIGH – LOW	
_A = WE _{AC} ● (WE _{AL} _B = WE _{BC} ● (WE _{BL}	+ WE _{BH})	nd Y _e Are Tested Indeper WITCHING TEST THREE STATE O	CIRCUIT	
	Vou	τ 0-0 ⁻⁰	V_{CC} S_2 $R_1 = 240 \Omega$	
		с _L <u>+</u> <u></u> <u></u> ік		

- 2. S₁, S₂, S₃ are closed during function tests and all A 3. S₁ and S₃ are closed while S₂ is open for t_{PZH} test. S₁ and S₂ are closed while S₃ is open for t_{PZL} test. 4. C_L = 5.0pF for output disable tests.

SWITCHING WAVEFORMS

Notes on Test Methods

The following points give the general philosophy which we apply to tests which must be properly engineered if they are to be implemented in an automatic environment. The specifics of what philosophies applied to which test are shown.

- Ensure the part is adequately decoupled at the test head. Large changes in supply current when the device switches may cause function failures due to V_{CC} changes.
- Do not leave inputs floating during any tests, as they may oscillate at high frequency.
- 3. Do not attempt to perform threshold tests at high speed. Following an input transition, ground current may change by as much as 400 mA in 5 – 8 ns. Inductance in the ground cable may allow the ground pin at the device to rise by hundreds of millivolts momentarily.
- 4. Use extreme care in defining input levels for AC tests. Many inputs may be changed at once, so there will be significant noise at the device pins which may not actually reach V_{IL} or V_{IH} until the noise has settled. AMD recommends using V_{IL} ≤ 0 V and V_{IH} ≥ 3 V for AC tests.
- To simplify failure analysis, programs should be designed to perform DC, Function, and AC tests as three distinct groups of tests.
- To assist in testing, AMD offers complete documentation on our test procedures and, in most cases, can provide actual Sentry programs, under license from Sentry.
- 7. Capacitive Loading for A.C. Testing

Automatic testers and their associated hardware have stray capacitance which varies from one type of tester to another, but is generally around 50 pF. This, of course, makes it impossible to make direct measurements of parameters which call for a smaller capacitive load than the associated stray capacitance. Typical examples of this are the so-called "float delays" which measure the propagation delays into and out of the high impedance state and are usually specified at a load capacitance of 5.0 pF. In these cases, the test is performed at the higher load capacitance (typically 50 pF) and engineering correlations based on data taken with a bench set up are used to

predict the result at the lower capacitance.

Similarly, a product may be specified at more than one capacitive load. Since the typical automatic tester is not capable of switching loads in mid-test, it is impossible to make measurements at <u>both</u> capacitances even though they may both be greater than the stray capacitance. In these cases, a measurement is made at one of the two capacitances. The result at the other capacitance is predicted from engineering correlations based on data taken with a bench set up and the knowledge that certain D.C. measurements (I_{OH} , I_{OL} , for example) have already been taken and are within specification. In some cases, special D.C. tests are performed in order to facilitate this correlation.

8. Threshold Testing

The noise associated with automatic testing, the long, inductive cables, and the high gain of bipolar devices when in the vicinity of the actual device threshold, frequently give rise to oscillations when testing high-speed speed circuits. These oscillations are not indicative of a reject device, but instead, of an overtaxed test system. To minimize this problem, thresholds are tested at least once for <u>each</u> input pin. Thereafter, ''hard'' high and low levels are used for other tests. Generally this means that function and A.C. testing are performed at ''hard'' input levels rather than at V_{IL} max and V_{IH} min.

9. A.C. Testing

Occasionally, parameters are specified which cannot be measured directly on automatic testers because of tester limitations. Data input hold times often fall into this category. In these cases, the parameter in question is guaranteed by correlating these tests with other A.C. tests which have been performed. These correlations are arrived at by the cognizant engineer by using data from precise bench measurements in conjunction with the knowledge that certain D.C. parameters have already been measured and are within specification.

In some cases, certain A.C. tests are redundant since they can be shown to be predicted by other tests which have already been performed. In these cases, the redundant tests are not performed.

* Preliminary. Subject to Change.

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics listed in this document are guaranteed by specific tests, correlated testing, guard banding, design and other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

 ADVANCED MICRO DEVICES
 901
 Thompson PI., P.O. Box 3453, Sunnyvale, CA 94088, USA
 © 1

 TEL:
 (408) 732-2400
 TWX:
 910-339-9280
 TELEX:
 34-6306
 TOLL FREE:
 (800) 538-8450
 Print

© 1986 Advanced Micro Devices, Inc. Printed in U.S.A. AIS-WCP-15M-01/86-0