Am5,86™

Microprocessor Family

c

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS

m High-Performance Design
— Industry-standard write-back cache support
— Frequent instructions execute in one clock
— 105.6-million bytes/second burst bus at 33 MHz

— Flexible write-through and write-back address
control

— Advanced 0.35-u CMOS-process technology
— Dynamic bus sizing for 8-, 16-, and 32-bit buses
— Supports “soft reset” capability

m High On-Chip Integration
— 16-Kbyte unified code and data cache
— Floating-point unit
— Paged, virtual memory management

m Enhanced System and Power Management

— Stop clock control for reduced power
consumption

— Industry-standard two-pin System Management
Interrupt (SMI) for power management indepen-
dent of processor operating mode and operating
system

— Static design with Auto Halt power-down support

— Wide range of chipsets supporting SMM avail-
able to allow product differentiation

m Complete 32-Bit Architecture
— Address and data buses
— All registers
— 8-, 16-, and 32-bit data types
m Standard Features
— 3-V core with 5-V tolerant I1/0
— Available in a 133-MHz version

— Binary compatible with all Am486®°DX,
Am486DX2, and Am486DX4 microprocessors

— Wide range of chipsets and support available
through the AMD FusionPCs™ Program

m 168-pin PGA package or 208-pin SQFP package
IEEE 1149.1 JTAG Boundary-Scan Compatibility

m Supports Environmental Protection Agency's
Energy Star program

— 3-V operation reduces power consumption up to
40%

— Energy management capability provides excel-
lent base for energy-efficient design

— Works with a variety of energy-efficient, power-
managed devices

GENERAL DESCRIPTION

The Am5y486 ™ microprocessor is an addition to the AMD
microprocessor product family. The new processor en-
hances system performance by raising the microproces-
sor operating frequency to the highest levels allowed by
current manufacturing technology, while maintaining
complete compatibility with the standard Am486 proces-
sor architecture and Microsoft® Windows®. The CPUs
incorporate write-back cache, flexible clock control, and
enhanced SMM. Table 1 shows available processors
in the Am5y86 microprocessor family.

Table 1. Clocking Options

Operating Input Clock Available Package
Frequency
133 MHz 33 MHz 168-pin PGA
133 MHz 33 MHz 208-pin SQFP

The Am5y486 microprocessor family allows write-back
configuration through software and cacheable access
control. On-chip cache lines are configurable as either
write-through or write-back. The CPU clock control fea-
ture permits the CPU clock to be stopped under con-
trolled conditions, allowing reduced power consumption
during system inactivity. The SMM function is implement-
ed with an industry standard two-pin interface.

This document contains information on a product under development at Advanced Micro Devices. The information is
intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed

product without notice.

Publication # 19751 Rev: C Amendment/0
Issue Date: March 1996

a AMD

PRELIMINARY

BLOCK DIAGRAM

32-Bit Data Bus

32-Bit Data Bus

T L

32-Bit Lmear Address

il

VOLDET
Power —>
Plane Vg, V
cC Ss
Clock
Interface
CLK
Generator | SEKMUL
STPCLK

Bus Interface

1T

I:’CD, PWT Add A31-A2
Barrel Segmentation N . <#:> ress BE3-BEO
Shifter Unit Paging Unit P Cache Unit 32 Drivers |¢——
Register Descriptor —I—> N Wiite
File :/ﬁb Registers 241 16-Kbyte B:f,gs
Physica :
ALU Ad)cliress: Limit and Translation iz’éffi Cache Copyback
Attribute Lookaside B:;gezrs
PLA Butfer Writeback
“9r Buffers
128 4x32
Data Bus D31-D0
Displacement Bus / Prefetcher (— 32 Transceivers
Micro-instruction 32 Qgg’ \Ii’v\jvﬁll %'\ﬁ—/cl)%l(
I | Code [32-Byte B‘;‘S Control | BLOCK, BOFF, AZOM,
S Stream| Code Queue equest | BREQ, HOLD, HLDA
Floating- Central and (}: | 2x16 Bytes Sequencer | RESET, INTR, NMI,
Point Protection Instruction 24 FERR, UP, IGNNE, SMI,
Unit Test Unit Decode SMIACT, SRESET
Decoded < >
Floating- Instruction BgrSttB‘:S BRODY, BLAST
Point Control Path = °nS.r° < >
Register ROM us Size = ==
File Control M
KEN, FLUSH,
g;‘]’t':; AHOLD, CACHE,
EADS. INV.
WB/WT, HITM
>
Geizl;g)t,ion POHK, _
DP3-DPO
and Control |gq——p
JTAG TDI, TCK,
TDO, TMS
[—>

Amb5y86 Microprocessor

PRELIMINARY AMD l"l

ORDERING INFORMATION
Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of the elements below.

AMD-X5 -133 A D W

|1

Case Temperature
W= 55°C
Z=285°C

Operating Voltage
D=345V
F=33V

Package Type
A =168-pin PGA
S = 208-pin SQFP

Clock Speed
133 =133 MHz
Family/Core
AMD-X5
Valid Combinations
. Case Temperature Valid Combinations
OPN Package Type Operating Voltage
ge 1yp P 9 9 (Max) Valid Combinations list configura-
AMD-X5-133ADW PGA 3.45V 550 C tions planned to_ be supported in vol-
ume for this device. Consult the local
AMD-X5-133ADZ PGA 3.45V 85°C AMD sales office to confirm avail-
N ability of specific valid combinations
AMD-X5-133SFZ SQFP 33V 85°C and to check on newly released
AMD-X5-133SDZ SQFP 3.45V 85°C combinations.

Amb5y86 Microprocessor 3

e\ AvD PRELIMINARY

Table of Contents

1 Connection Diagrams and Pin DeSIGNatiONScooeiiiiiiiiiiiiiiiii ittt a e e e e eee s 8
1.1 168-Pin PGA (Pin Grid Array) PACKAgEcccuuuiiiiiiiiieiiaaa ettt eeeaaaeaae s 8
1.2 168-Pin PGA Designations (Functional GrOUPING)cceeeuieaaaaaiiiiiiiiiiiiee e e e e e e e eee e eeaaaee s 9
1.3 208-Pin SQFP (Shrink Quad Flat Pack) Packageccccouiiiiiiiiiiii e 10
1.4 208-Pin SQFP Designations (Functional Grouping)ccoouueiiimimieiiiiee e eeee e 11

P22 Moo (o30S} 111 o Lo | PP PURPTRRT 12

I T 1 T B =TT g o] (o o TSSO PRRRTR 13

4 FUNCLONAI DESCIIPIIONiiiiiiiiiiiiee ittt ettt e e s et e e e et e e e s e et e et e e s e anbbe e e e e e annnes 18
.1 OVEIVIEW .tttk e 4 ekttt e 4 4Rkttt e 442kt e e e 4 e skt et e e 4 a R b et e e e e n bbb e e e e e e s e e e e 18
|V =T 0 Lo OO OP PP 18
4.3 MOUES Of OPEIALION ...eiiiiiiiiiiee ettt e ettt e e e e et e e e e ek bt e e e e et b e e e e e e e anbr e e e e e annrreas 18

4.3 1 REAIMOUE ..ttt oot e e e skttt e e e et b e e e e e st b e et e e e e bn e e e e e e anr e e e e e e aae 18
4.3.2 VIFTUAI MOTE ...ttt e e st e e e e st b et e e e e abbbe e e e e e sbreeeaeenaaes 18
G IR B o (o] (=Tox (=To [0 T o [OO TP PPTPTPPPRP 18
4.3.4 System Management MOUEc.oiiiiiiiiiiiiiie ettt e e e e et e e s e anb e e e e nanene 18
4.4 CaCNE AFCRITECIUIE ..ottt e e et e e e e et e e e s e abb e e e e e nrnees 18
4.4.1 Write-Through CaChEccoiiiiiee e enees 18
4.4.2 Write-Back CaChecooiiiiiiiii e 18
4.5 Write-Back Cache ProtOCOIc.ueiiiiiiiiiiie et e 19
4.5.1 CACNE LINE OVEIVIEW ...ciiiiiiiiiiiee ettt ettt e ettt e e e et e e e e ettt e e e e anb e e e e e nnneee 19
4.5.2 Line Status and LiNe STALEcooiiiiiiiiiiiiiiiie ettt e b e e e e 19
A.5.2. 1 INVANA oot s 19
A.5.2.2 EXCIUSIVE ...ttt ettt et e skttt e e st e e e e e 19
A.5.2.3 SNAIEA ... e e e e e e e 19
A.5.2.4 MOGIfIEA ...ttt 19
4.6 Cache Replacement DESCHIPIIONcoiiiiiiiiiiiiiiie ettt e et e b e e e e enbeas 20
4.7 MemOory CONFIQUIATIONouiiiiieii ittt ettt e e ekt e s e et e e e e s e aabb e e e e e aerbeas 20
A.7.1 CaCN@ADIIILY ..o e e e e e e e e e 20
4.7.2 Write-Through/WHEE-BaCKccoiiiiiiiiiiiii e 20
4.8 Cache Functionality in Write-Back MOueiiiiiiiiiiiiiiiiiie e 20
4.8.1 Processor-Initiated Cache Functions and State TransSitionsccccccevvviiiiieeiniiieee e, 20
4.8.2 Snooping Actions and State TranSitioNSocueiieiiiiiiieee e 21
4.8.2.1 Difference between SNo0PING ACCESS CASESccuuviieeiiiiiiieeeiiiieee e sireee e sieree e 21
4.8.2.2 HOLD Bus Arbitration Implementationcoocueeiieiiiiiiie e 22
4.8.2.2.1 Processor-INnduced BUS CYCIEScooiiiiiiiiiiiiiiiee et 22
4.8.2.2.2 EXEEINAl REAMcoiuiiiiiiiiiiieie ettt 22
4.8.2.2.3 EXEEINAI WIILE ..oiiiiiiiiiie ettt 22
4.8.2.2.4 HOLD/HLDA External ACCeSS TIMINGooviiiiiiiiiiiiiiiieiie e 22
4.8.3 External Bus Master SN00PING ACLIONSccciiiiiiiiieiiiiiee et 25
4.8.3.1 SNOOP MISS ..eeiiiiitiiiee ettt ettt e e e e et e e e st e e e bbb e e e e s ab e e e e e abbaeeee e 25
4.8.3.2 Snoop Hit to @ NoN-Modified LINEooeiiiiiiiiiii e 25
4.8.4 WIIE-BACK CASE ...ciiiiiiiei ittt ettt e e e e bt e e e e sbb e e e e s et e e e e e annaees 25
4.8.5 Write-Back and PendiNg ACCESSuoiiiiiiiiiieii ittt ettt e 26
4.8.5.1 HOLD/HLDA Write-Back Design Considerationsccccceeevviiieeeenniiiene e 27
4.8.5.2 AHOLD Bus Arbitration Implementationc.cocueeeieiiiiiineiiee e 28
4.8.5.3 NOrMal WIHE-BACKuviieiiiiiieiiee ettt e e e e s sabeaeee e s e 28
4.8.6 Reordering of Write-Backs (AHOLD) With BOFFcoeiieiiiiiiiee e 29
4.8.7 Special Scenarios FOr AHOLD SNOOPING ..ceieeeeiiiiiiiiiiiiiiie et ee e e e e e e et e eeaeaaa e e e e e e annnes 30
4.8.7.1 Write Cycle Reordering due to BUfferingc..eevveiiiiiiiii e 30
4.8.7.2 BOFF Write-Back Arbitration Implementationcccooeevveeieieeeeece e 32
4.8.8 BOFF Design CONSIAEIALIONSc.cceiiueereiieitieeteeete et eteeeteeaieeteeeteeeteeteseteeeaeenteeneesteesreesaeas 32
4.8.8.1 CaChe LINE FillSeeiiiiiiieii ettt 32
4.8.8.2 Cache Line COPY-BACKSuuuiiiiiiiiiiaaii ittt e e e e e e e e e e e e e enennes 32
4.8.8.3 LOCKEA ACCESSES ...oeiiiiiiiiieiee ittt ettt ettt e et e e e s it e e e e s et e e e e e s sabbneeeeeea 32

4 Amb5y86 Microprocessor

PRELIMINARY AMD l"l

4.8.9 BOFF DUNNG WIE-BACKcocviiiviiiceie ettt ettt ee et e et teeenee e etee e e eneeenneas 32
4.8.10 Snooping Characteristics During a Cache Line Fillc.covvveiiiiiiiiiiiiiiiece e 32
4.8.11 Snooping Characteristics During a COpy-Backccccuuvviiiiieieiiiiiiiiiiiieeieeee e 32
4.9 Cache Invalidation and Flushing in Write-Back Modeccccciiiiieiiiiie e a e 33
4.9.1 Cache Invalidation through SOftWarecccooiiiiiiiiiiiie e 33
4.9.2 Cache Invalidation through HardWarecoooiiiiiiiiiiiieeee e 33
4.9.3 Snooping DUring Cache FIUSNINGuuuiiiiiiiiiiie e e e e e e e 34
O =N = AV (= TP PP PR 34
4.10.1 LOCKEA ACCESSES ...iueiiiiieiitiiiee e ettt e e ettt e e ettt e e e sttt e e e e e e st e bt e e e e sttt e e e e e anbbaeeeseanbeeaeeennnees 35
4.10.2 SEIIAIIZALIONvviiiiei ittt e et e e e e e e et r e e e e s ba e e e e e s anbeeeeeen e 35
4.10.3 PLOCK Operation in Write-Through MOGEccccovvveiieiciecieeee e ee et eee e 36
(@10 To1 Q@10 o1 (o R PSSR 36
L O ool ©1=T e 1= = 1o o [PRSP SSRR 36
L7 o] o @ o T PSS 36
5.2.1 External Interrupts in Order Of PriOMtYcooiiiiiiiiiiiie e e 36
5.3 StOP Grant BUS CYCIEuiiiiiiiiiiiiiee e ettt e e e e e e e s e e st e e e e eeaeea e s s e e s aabantaeeeeeaaeeeseesannnnns 36
5.4 Pin State during STOP GFaANtccceieiiiiiiiiiiiiiiie et e e e e e e e s s s st ae e e e eeaaea e s e s s s nnrarasaareeeeaaeeeseesannnnns 37
5.5 Clock Control State DIAGIAMccccieiiiiiieiiiiiiieie e e re e e e e e e ss s st e e reaaeeeeasssassnnsrarasserereeeaeeeseeanannnns 37
LT A [0 = 1S = L= ST URRPP 37
5.5.2 STOP Grant SEALEciieiiiiii i e e e e et 37
LIRS (o] o J O [T) = = SRR 39
5.5.4 Auto Halt POWET DOWN STAEcuvviiiiiiiiiiiiie ittt st e s s e e e e 39
5.5.5 Stop Clock Snoop State (Cache Invalidations)cccveeeiiiieeeir i 39
5.5.6 CaChe FIUSH STAtEveiiiiiiiiiie et eennbeas 39
TR =] = I ¥ T 1o o PRSPPI 39
YY) L Y= T = To T=T a0 L= g A gL Yo [PRSP 39
A8 RO Y= = TP PRPOPPRPPN 39
47 =11 41TV] (oo |V EUEURRN 40
7.3 System Management INterrupt PrOCESSINGvvvvuirieiiiiiii i i e s eeeee ettt s e s e s e e e e e e aaeaeeeanesennnns 40
7.3.1 System Management INterrupt ProCESSINGovvvvuiiiiiiiiiiiieie e e e ee e e e e 41
7.3.2 SMIACHVE (SMIACTT) iuiiitieiti ettt ettt ettt te e s be st s ae e be e sa e st e sbe e sbeeaeesbeesbeenbesnaeseeenns 41
T.3.3 SMRAM e ettt e ettt e e et e e e aa b bt e e aaneees 42
7.3.4 SMRAM STate SAVE MAP ..iiiieeieiiiiiiiiiiiiiie e e e e e et e e ettt s s e s e e e e e e aeaeeeeeeaeeessnenannn e eeas 43
7.4 Entering System Management MOUEevuiiiiieeeeiiiiiiiiiiee e e er e e e e s e e sssesrrerrrarrreeeaaeaeeesaneansnrnnes 44
7.5 EXiting System Management MOOEuuuiiiiiiiiiieeeieie it er e re e e s e e s s s s st e eareeaeaaeessnesnnsnnes 44
7.6 ProCeSSOr ENVIFONMENTeiiiiiiiiiiie ettt e ittt ettt e ettt e e st ee s e snbt et e e sansbee e e e e sntabeeee s s snneeeeens 44
7.7 Executing System Management mode HandIeruvvveiiiiiiiee e 45
7.7.1 Exceptions and Interrupts with System Management Modecccccccevveeeeeeeeeiiecccivinnnnnen 46
7.7.2 SMM REeVISIONS [AENLFIEEeeiiiiiiiiiee et 46
7.7.3 AULO HALT RESTAN ...t e e e e e e e e e e e e e e e e e nnnnn s 47
A 1L T = o TN = =] = L SO 47
A 31 7L T = o T AT/ (o USRS 47
7.7.6 SMM Base REIOCALIONc.ueviiiiiiiiiiiiie ettt s et e e e s et e e e e e eneeees 48
7.8 SMM System Design CONSIAEIALIONSuuuiiiiiiiiieeeiiiiiiiiiee e eeeeae e s s e s sssrr e e e eeeaeaeesesaneannrnnes 48
7.8.1 SMRAM INTEITACEcoiiiiiiit ettt e e e e ettt e e e e e e e e e e e e e nnb e e nene s 48
7.8.2 CAChE FIUSNES ...ttt e st e e e a e e s s e s 49
T.8.3 A20M Pl 1ottt ettt ettt ettt be e ebe e ta et e be e b e enbe e be et benae e reereenes 49
7.8.4 CPU RESEt dUNNG SIMMuiiiiiiiiiiiiiee ettt e e e e e e s e e st e e e e e aae e e e s e e s e snnntnnsnnneeees 52
7.8.5 SMM and Second Level Wte BUfEIScoiiiiiiiiiiiiiie et 52
7.8.6 Nested SMI and 1/O RESTLANeiiiiiiiiiiee ittt e e st e e e nneeeee s 52
7.9 SMM SOftware CONSIAEIALIONS ...c.ciiveiiiie ittt ee ettt e e et e e e sttt e e e s ssbeeeeeesaabbeeeeesanbbeeeeeeans 52
7.9.1 SMM Code CONSIAEIALIONS ...ueviiiiee ittt e et e e e s bbb e e e s snnneeeens 52
7.9.2 EXCeption HAaNAIINGccoiiiiiiiiiieiei et e e e e e e e e e s e e e e e e e e e e e s e e e nnannrrnnaees 52
7.9.3 Halt dUriNg SMM ..o e et e e e s e e s e e e e e e aaae e e e s e e arrerreees 53
7.9.4 Relocating SMRAM to an Address above 1 MBytec.oooiciiiiiiiiiiecee e 53

Amb5y86 Microprocessor

e\ AvD PRELIMINARY

10

11

12
13

Test Registers 4 and 5 MOIfICAtIONSooveieeiiiiiii e e e e e e e e ereeeees 53
S I B 1< 01 (o o PRSP 53
2 I ST B 1< 1011 (e o PP 54
8.3 Using TR4 and TR5 for Cache TeSHNGuuuiuiiiiiiiiee i e ittt e e e e e e e e s s s rrare e e e e e e eaeeeeeeennnnnes 55
8.3.1 Example 1: Reading the Cache (Write-back mode only) ..o 55
8.3.2 Example 2: Writing the CaCh@eeeviiiiiiie e 55
8.3.3 Example 3: FIushing the CaCheccoviiiiiiii e 55
AmM5y486 CPU FuNCctional DIffErENCESveiiiiiiiiieie et 55
9.1 SHALUS AFLEI RESEL ...eeiieiiiiiiiii ettt s e e e st e e e s et e e e e nbr e e e e erreas 55
LS I O Yol oIS = L1 F PP 55
LS JRC J O I8 Q1,16 | = o S SUSSSRR 55
AMS5486 CPU [IdENLIfICALIONeiiiiiiiiiii ettt e s nnnee s 56
10.1 DX REQIStEr @t RESETiiiiciiieiiiiiiiiieeee e e s s e s sttt e e s e e e e e e e e s s st aaeeeeeeaaeeseesaananntenbanrreeeeaeaees 56
10.2 CPUID INSIIUCLION ..utiiiieiiiiiie ettt e ettt e e sttt e e e skt e e e e sabe e e e e s e abe e e e e e anbbbeeeeeesnbaeeeeeannnes 56
10.2.1 CPUID TIMINQ «eeteituteaiireeaiteeestueesateesasseeeesteeeanseseessaeeeanseeesssseeassseeesnssseassereesnseeesnseseesssesans 56
10.2.2 CPUID OPEIAtION ...uuueiiiiiiiieeiieeeeeeisisssititeteeeeeeraesaeesssssaasnssaaseasrreraaaeaesssssnsassssssrerreaeeeeeeees 56
S oTot i gTor = | - PP TTPPRPN 57
I3 00 I =0 1YY= = T o B 1 (0] 0 T 113 Vo SRR 57
11.1.1 POWET CONNECLIONS ...utiiiiieiiiitiieeeeieittiee e e e sttt ee e e sttt e e e e sbbeeeee e s nbeeeeaeassbeseeeesabbeeeeesannbneeaaeans 57
11.1.2 Power Decoupling RECOMMENAALIONSuuiiiiiiiiieeiie e e e e e e s e eeaae e 57
11.1.3 Other Connection RECOMMENUALIONSueiiiiiiiiiiee ettt e et e s sbree e e e s sbaeeee e anes 57
Package Thermal SPeCIfiCatiONSc.uuiiiiiiiiiieiee e r e e e e e e e e e s s s sanrenraeeeeees 65
L)V o= I 4=] o SRS 66

LIST OF FIGURES

Figure 1 Processor-Induced Line Transitions in Write-Back modecccccoovveivieeiee e 20
Figure 2 Snooping State TranSItiONScccccuviviiiiiiiiiee e e e s s e e e e e e e e e s s e e s rrrreeeeaaeaeeseaanannnrnnes 21
Figure 3 Typical System Block Diagram for HOLD/HLDA Bus Arbitrationcccccccevveeeeeeiniiicivnnnnnnnnn, 22
Figure 4 EXIEINAI REAUAoevviiiiiiieii ittt e e e e e e e e e e e e e s e s s s s s bt eearereeaaeeeseesnnnnnnreneees 23
FIQUIE 5 EXIEINAI WIILE ...euiiiiiiiiieiiie e ettt e e e e e s s et e et e e e e e e e s e e sa s anteatbaaeeeaeaaeeeesesannannrnnes 23
Figure 6 Snoop of On-Chip Cache That Does Not Hit @ LiNecooooiiiiiiiiiiiiiie e 24
Figure 7 Snoop of On-Chip Cache That Hits a Non-modified Lineccccccvivieiieieieee e 24
Figure 8 Snoop That Hits a Modified Line (Write-Back)ccveeeiiiiiiiiiiiieeeeee e 25
Figure 9 Write-Back and PeNdiNg ACCESS ...uuuiiiiiiiiieii ittt e e e e st r e e e e e e e e e e s e s eneanaeeeaees 26
Figure 10 Valid HOLD Assertion During Write-Backccccuiiiiiiiiiie e 27
Figure 11 Closely Coupled Cache BIOCK Diagramccccciiuiiiiiieiieeee e sescssiniieree e e e e eeeae e e s s e s snennnenenees 28
Figure 12 Snoop Hit Cycle With WITE-BACKuieiiiiiieeiiii it e e e e e e e e e e e e s snnnnes 29
Figure 13 Cycle Reordering with BOFF (WHt@-BACK)cveeieieetieitiieieieeeeeeeeeeete e et e e eteeeeve e eaee e 30
Figure 14 Write Cycle Reordering Due to BUfENNGccccvvviiiiiiiiiiic e 31
Figure 15 Latest Snooping Of COPY-BaCKuuiiiiiiiiiiiii e e e 33
1o T I G T =10) YA 1 (= PSSR 34
Figure 17 Burst Read With BOFF ASSEITIONccceeiciieiieetie et ceeeetee et eetae e etee s eveesateeeteeereeanes 34
Figure 18 Burst Write With BOFF ASSEITIONccvvieueeieieetieeeeecteeeeeeeeeeeeeeeeteeetesssaeesteessteesneeeeresenseeannes 35
Figure 19 ENtering StOP Grant STALEccc.uuiiiiiiiiiiiiee e e e e e e e e e e e s s st ee e e e e e aeeaeeesseeannnrnnrnneeees 37
Figure 20 Stop Clock State MaChINeccocciiiiiiiiiice e e e r e e e e e e e e e ae e annanes 38
Figure 21 Recognition of Inputs when EXxiting Stop Grant Statecccccevevviiiiiiiiiiieiee e 38
Figure 22 BasiC SMI INTEITUDPL SEIVICEcocuieiieeceeeeieeceeeteeeeee e eteeeteeeteestee s eteesraeeeteeeeteeeteesteeeeteesaeeenees 40
Figure 23 BasiC SMI Hardware INtEITACE.cceeceeeieeeeee et ce e ee ettt e ae e ree s eteeenteeereseereeeenes 41
Figure 24 SMI Timing for Servicing an 1/O TIAPcceeeeuveereeeeteeeeeeee et e eee e eteeeee e see s eteesaaeeereeeereeenees 41
FIigure 25 SMIACT TiMING .eccveeieee et eeeeetee et etee et eeeteestteeete e esteeesteseteesreessaesentesaseessseessreesneeearesereeanees 42
Figure 26 Redirecting System Memory Address t0 SMRAMoovviiviiiii i 42
Figure 27 Transition to and from SMMuuuiiiiiiiiiee e e e e e e e e e e s s e e snranreaeaees 44
Figure 28 Auto HALT Restart Register OffSel.......cccoiiiiiiiiiiie e a7
Figure 29 /O Instruction Restart Register OffSELccociiiiiiiiiiiec e 47
6 Amb5y86 Microprocessor

PRELIMINARY AMD l"l

Figure 30 SMM Base SIOt OffSEEeiiiiiiiiiiieiiiee et bbb e e e e e e 48
FIGUIE 31 SRAM USAQGEiiiiiiiiiiiiiie ettt ettt ettt e e e ekttt e e e e s bb et e e e ek be e e e e e anbbe e e e e e e aabaeeeeeannnbeas 48
Figure 32 SMRAM LOCALION ..cciiiiiiiiiiieiiiitiee ettt ettt e e ekttt e e s st e e e e e aabe b e e e e s abbe e e e e ennneees 49
Figure 33 SMM Timing in Systems Using Non-Overlaid Memory Space and Write-Through Mode

with Caching Enabled DUMNG SMM.........cooiiiiiiiii et 50
Figure 34 SMM Timing in Systems Using Non-Overlaid Memory Spaces and Write-Back Mode with

Caching Enabled DUNNG SIMMui ittt e et e e seneeeeas 50
Figure 35 SMM Timing in Systems Using Non-Overlaid Memory Spaces and Write-Back Mode with

Caching Disabled DUIMNG SMMooiiiiiiieie et e e neree e 50
Figure 36 SMM Timing in Systems Using Overlaid Memory Space and Write-Through Mode with

Caching Enabled DUNNG SIMMouiiiiiiie ettt e e e e e seneeeeas 51
Figure 37 SMM Timing in Systems Using Overlaid Memory Spaces and Write-Through Mode with

Caching Disabled DUINMNG SMMooiiiiiiiiiie ettt e e e nnaee e 51
Figure 38 SMM Timing in Systems Using Overlaid Memory Spaces and Configured in

WILE-BACK MOoii ittt e e e e et e e e e et e e e e e nneee 51
Figure 39 CLK WAVETOIMS ...ueiiiiiiiiiii sttt e et st e et e e e e e e e s e e s et aeateeeeeaeaaeeeeeesanannnnrnnes 61
Figure 40 Output Valid Delay TimMiNGccccoiooiiiiiiiieiie e ee s r e e e e e e e e e s e s s s s aaa e e s ereaeeeesesansannnnnnes 61
Figure 41 Maximum Float Delay TiMiNQuueeeeirriieeeeieeisieciieie e e er e e e e e e s s s s rrreerereeeeaese s s e e annrnnnnnneees 62
Figure 42 PCHK Valid Delay TIMINGcccuuiuiiiiiiiiiieeeeeessiiiesiiesieeeeseeeeeeeesssssssssssssseeseseeeeaeeesssssnnnsnsssnsnens 62
Figure 43 Input Setup and HOIA TIMINGuuiiiiiiiiiiiieee e e e e e e s s s e e e e e e aee e e s e e snnnnneeeneees 63
Figure 44 RDY and BRDY Input Setup and Hold TiMINGcccoeoiieivieiieecee et 63
Figure 45 TCK WaAVETOIMS ..oeiiiiiiiieiiii ittt e e et e e e e e e s e s st e e e e e eeaeeaeeesssaannennrennnees 64
Figure 46 Test Signal TiImMING DIAGIAMuuuiiiiiiiiiieieeeee e s iis e e e e reeeaeeesss s s sanra e eareraeaaeaeseesaansnnnrennens 64
LIST OF TABLES
BIF= o] L= 0 R @1 (o Tod (] o @) o 1 1
Table 2 EADS SamPIE TiME ...t ee et r e e e e e e e e e s e e e et e e aeeeseessnnanntentannreareeeaeeas 14
Table 3 Cache Line OrganiZatiOneceiiiieeoiiiiiiiiiiieie e et e e e e s e e s s s s e e e eeaaeea e e s s e s ssnnssnranneraeeaaeaes 19
Table 4 Legal Cache LiNE STALESuuiiiiiiiiiieeiie it re e er e e e e e e e e s e e e e e e e e e e e e s e s s snnrnnaranrareeaeaeas 19
Table 5 MESI CaChe LiNE STAUSeeeiiiiiiiiiiiie ittt ettt e e e s e e e s e annneeeas 20
Table 6 Key to SWItChing WaVETOIMSooiiiii i e e e e rr e e e e aaeae s 22
Table 7 WBINVD/INVD Special BUS CYCIESccccceiiiiiiiieieee ettt e e e e e e e e e ne e e eeaaeee s 33
Table 8 FLUSH SPeCial BUS CYCIESuuiiiiiiiiieeiii et e et e e e s s s e e e e e e e e e e e s s e s s nnnntnnanneeeeeeaeaes 34
Table 9 Pin State during Stop Grant BUS STAtEuuiiiiiiieeieiiiiii e e e e e e s s e s ssirnrre e e raeaae e e 37
Table 10 SMRAM Stat€ SAVE MAP ...uuvuiiiiiiiiiiiieeee et i ii s ssiteteeeee e e e e ae e e s s s saa e aeaeeeaaaaaeesasanannnnreesreeereees 43
Table 11 SMM Initial CPU Core RegiSter SENGScccccvviiiiiiiiiiiieeee e s s s e e e e e e e e e e s esnnrae e eeeees 45
Table 12 Segment Register INitial STAESc.vviiiiiiiiiiiicce e e e e e eeeees 45
Table 13 SMM ReVISION [AENLTIEToieeiiiieiieie e s e e st e e e e aneeees 46
Table 14 SMM Revision Identifier Bit DEfiNItIONScooiiiiiiiiiiii e 46
Table 15 HALT Auto Restart Configurationooooiiiiiiiiiire e e e e e e raereeeaaeaeas 47
Table 16 1/0O Trap Word ConfigUrationcooiiiiiiiiiiiiiiir e s r e e e e e e e e e e s s s s nareaaeeraeaeeeaneean 47
Table 17 Test Register TR4 Bit DESCIIPLIONSccccuveiiiiiiiiiieiee e e e e e i st tieee e e e e e e e e e s s s s s ssaaarrrarareeraeaaeeasanan 53
Table 18 Test Register TR5 Bit DESCIIPLIONScccuveiiiiiiiiiieiee e e e e s i cctitieer e e e e e e e e e s s s s s s e areeraaaeeeaaenan 53
TADIE 19 CPU ID COUEBS ..eeiiiiiiiiiiiie ittt ettt e sttt e e s sttt e e e sttt e e e sttt e e e s anbtee e e e s bbb eeaesanbbbeeeessannaeeeas 56
Table 20 CPUID INStruCtion DESCHPLION ...viiiiiieeeii e e ittt e et e e e e e e e e s s s ere e e e e e e e e e e e e s s s s snnrnnrraerereaaeaeas 56
Table 21 Thermal Resistance (°C/W) 8,c and 8,, for the Am5486 CPU in 168-Pin PGA Package 65
Table 22 Maximum T, at Various AIrflOWS iN PCuiiiiiiiiiiicc e e 65
Table 23 Maximum T, for SQFP Package by ClOCK FIEQUENCYuuiviiiiieeeeiiiiiiiiiiiiieeieee e e e e e e s s 65

Amb5y86 Microprocessor

a AMD

PRELIMINARY

1 CONNECTION DIAGRAMS AND PIN DESIGNATIONS
1.1 168-pin PGA (Pin Grid Array) Package
A B C D E F G H J K L M N P Q R S
/D20 D19 D11 D9 Vss DP1 Vss Vss INC Vss Vss Vss D2 DO A31 A28 A27
1 O @] @] O O O @] 0] @] @] O @] @] O O O @]
D22 D21 D18 D13 Vec D8 Vec D3 D5 Vec D6 Vec D1 A29 Vss A25 A26
2 O O O O O O @] O @] O O O O O O o] @]
TCK Vss CLK D17 D10 D15 D12 DP2 D16 D14 D7 D4 DPO A30 Al7 Vec A23
3 O O 0] O O O O O @] O O O O O O O O
D23 Vss Vecc /7 ~\ A19 Vss VOLDET
4 O O O O (@] O
DP3 Vss Vcc A21 Al8 Al4
5 O O 0] O o] @]
D24 D25 D27 A24 Vec Vs
6 O O 0] O 0] O
Vss Vecc D26 A22 Al5 Al12
7 O @] 0] O (o] @)
D29 D31 D28 A20 Vec Vss
8 O O 0] O o] @]
Vss Vce D30 PIN SIDE VIEW Al6 Vcc Vss
9 O @] O O (@] @)
INV SMi SRESET Al3 Vec Vss
10 O O O 0] o] 0]
Vss Vce UP A9 Vce Vss
11 O @) o O (@] @]
HITM CACHE SMIACT A5 All Vss
12 O @] O O (@] @]
INC WB/MWT INC A7 A8 AlD
13 O @] O O O O
TDI TMS FERR A2 Ve Vss
14 O @) O L /O (@] @]
IGNNE NMI FLUSH A20M HOLD KEN STPCLK BRDY BE2 BEO PWT D/C LOCK HLDA BREQ A3 A6
15 O O 0] O O O @] O @] O O O 0] O (o] @)
INTR TDO RESET BS8 Vcc RDY Vec Vec BEL Vec Vee Vee MAO Vec PLOCK BLAST A4
16 @) @] 0] @] O O O 0] @] 0] O O 0] O 0] (0] O
AHOLD EADS BS16 BOFF Vss BE3 Vss Vss PCD Vss Vss Vss W/R Vss PCHK CLKMUL ADS
17 O @] 0] O O O @] @) @] 0] O @] @] O O (@] @)
A B C D E F G H J K L M N P Q R S

10

11

12

13

14

15

16

17

Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

1.2 168-pin PGA Designations (Functional Grouping)

Address Data Control Test INC Vee Vgg
Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin
Name No. Name No. Name No. Name No. No. No. No.
A2 Q-14 DO P-1 A20M D-15 TCK A-3 A-13 B-7 A-7
A3 R-15 D1 N-2 ADS S-17 TDI A-14 C-13 B-9 A-9
A4 S-16 D2 N-1 AHOLD A-17 TDO B-16 J-1 B-11 A-11
A5 Q-12 D3 H-2 BEO K-15 T™MS B-14 C-4 B-3
A6 S-15 D4 M-3 BE1 J-16 C-5 B-4
A7 Q-13 D5 J-2 BE2 J-15 E-2 B-5
A8 R-13 D6 L-2 BE3 F-17 E-16 E-1
A9 Q-11 D7 L-3 BLAST R-16 G-2 E-17
Al10 S-13 D8 F-2 BOFF D-17 G-16 G-1
All R-12 D9 D-1 BRDY H-15 H-16 G-17
Al2 S-7 D10 E-3 BREQ Q-15 K-2 H-1
Al3 Q-10 D11 C-1 BS8 D-16 K-16 H-17
Al4 S-5 D12 G-3 BS16 C-17 L-16 K-1
Al5 R-7 D13 D-2 CACHE B-12 M-2 K-17
Al6 Q-9 D14 K-3 CLK C-3 M-16 L-1
Al7 Q-3 D15 F-3 CLKMUL R-17 P-16 L-17
Al18 R-5 D16 J-3 D/C M-15 R-3 M-1
Al19 Q-4 D17 D-3 DPO N-3 R-6 M-17
A20 Q-8 D18 C-2 DP1 F-1 R-8 P-17
A21 Q-5 D19 B-1 DP2 H-3 R-9 Q-2
A22 Q-7 D20 A-1 DP3 A-5 R-10 R-4
A23 S-3 D21 B-2 EADS B-17 R-11 S-6
A24 Q-6 D22 A-2 FERR C-14 R-14 S-8
A25 R-2 D23 A-4 FLUSH C-15 S-9
A26 S-2 D24 A-6 HITM A-12 S-10
A27 S-1 D25 B-6 HLDA P-15 S-11
A28 R-1 D26 C-7 HOLD E-15 S-12
A29 pP-2 D27 C-6 IGNNE A-15 S-14
A30 P-3 D28 C-8 INTR A-16
A31 Q-1 D29 A-8 INV A-10
D30 C-9 KEN F-15
D31 B-8 LOCK N-15
M/TO N-16
NMI B-15
PCD J-17
PCHK Q-17
PLOCK Q-16
PWT L-15
RDY F-16
RESET C-16
SMI B-10
SMIACT C-12
SRESET C-10
STPCLK G-15
UP C-11
VOLDET S-4
WB/WT B-13
W/R N-17
Notes:

1. VOLDET is connected internally to Vss.
2. INC = Internal No Connect

Amb5y86 Microprocessor

e\ AvD PRELIMINARY

1.3 208-pin SQFP (Shrink Quad Flat Pack) Package

i3

up

§Ss

207 —1LOCK
206 ——1PLOCK
205 —1 Voo
204 —_—1BLAST
203[——1ADS
202 —1 A2
2011 Vg
200 —— 1V,
1991V,
198 — Vv,
197 1 A3
1961 A4
1951 A5
194
1931 A6
1921 A7
191 — Vg
190 —— A8
1891 Vg
1881V,
187 —1 A9
1861 A10
185 ——1 V¢
184 —1Vgg
183[— V.,
1821 A11
181 —v
180 A
179 ———1 V¢
1781 A13
177 ——31 A14
176 — Ve
175 Vg,
174 —1A15

160 ——1A22
159 —1A23
1581 A24
157 — 1V

Vs 1 156
Veeo —2 155
INC C——]3 Q 154
PCHK ——14 153
BRDY ———15 152
BOFF 6 151
BS16 —7 150
Bss s 149
O — 148
Vgg C—10 / \ 147
CLKMUL |11 146
RDY |12 145
KEN C—13 144
Voo 14 143
Vgg C—15 142
HOLD 16 14t
AHOLD ——]17 140
TCK C—]18 139
Voo C—]19 138
Voo C—20 137
Ves C—q21 136
Voo C—]22 135
Voo C—23 :gg
Voo s TOP VIEW 138
HLDA ——]26 131
W/R 27 130
ss C—]28 129
co C—29 128
BREQ 130 127
BEOQ 31 126
BE1 32 125
BE2 ———]33 124
BE3]34 123
Voo —]35 122
Vss ——]36 121
M/TO ——]37 120
Voo 138 119
D/C |39 118
PWT 40 \ / 117
pPCD C—]4! 116
Voo 42 115
Vgs C—]43 114
Voo 44 113
Voo 45 112
EADS 146 111
A20M |47 110
RESET ———]48 109
FLusH 49 108
INTR —]50 107
NMI 51 o108
$s LOLOOLWOLWOWOOOOOOOOOONNNNNNNNNDNOLDDOWOWNDOENDODWNVWNDVMDVDVDODDDDDDDODDDD— — — —
®OW OB O DOISIIZ[EO O PWSW|X T O ® O®® O DOMNOIW OF BOMOMAUT ®» OO » 0O DO O~ ©
mowofomoowo._l;lEn:ZouIzz_lmm ®ONN O ®ONNAN ON ®0oa NNN ®» 0o ® ON =~ O @
>>>>> ole> >> |- 7oy — > o-zloPa>>0a0>>>00a0>0>>n00008>>Z">>000>0>
wl= Ioo lu < |ojo
x|= = o 12|
ol »

VSS

VCC
A25
A26

D16

10 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

1.4 208-pin SQFP Designations (Functional Grouping)

Address Data Control Test INC Vee Vs
Pin Name Pin Pin Name Pin Pin Pin Pin Pin Pin Pin Pin

No. No. Name No. Name No. No. No. No.
A2 202 DO 144 A20M 47 TCK 18 3 2 1
A3 197 D1 143 ADS 203 TDI 168 67 9 10
A4 196 D2 142 AHOLD 17 TDO 68 96 14 15
A5 195 D3 141 BEO 31 T™MS 167 127 19 21
A6 193 D4 140 BE1 32 20 28
A7 192 D5 130 BE2 33 22 36
A8 190 D6 129 BE3 34 23 43
A9 187 D7 126 BLAST 204 25 52
A10 186 D8 124 BOFF 6 29 53
All 182 D9 123 BRDY 5 35 55
Al2 180 D10 119 BREQ 30 38 57
Al3 178 D11 118 BS8 8 42 61
Al4 177 D12 117 BS16 7 44 76
Al5 174 D13 116 CACHE 70 45 81
Al6 173 D14 113 CLK 24 54 38
Al7 171 D15 112 CLKMUL 11 56 94
Al18 166 D16 108 D/C 39 60 97
Al9 165 D17 103 DPO 145 62 104
A20 164 D18 101 DP1 125 69 105
A21 161 D19 100 DP2 109 77 107
A22 160 D20 99 DP3 90 80 110
A23 159 D21 93 EADS 46 82 115
A24 158 D22 92 FERR 66 86 120
A25 154 D23 91 FLUSH 49 89 122
A26 153 D24 87 HITM 63 95 132
A27 152 D25 85 HLDA 26 98 135
A28 151 D26 84 HOLD 16 102 138
A29 149 D27 83 IGNNE 72 106 146
A30 148 D28 79 INTR 50 111 156
A3l 147 D29 78 INV 71 114 157
D30 75 KEN 13 121 170
D31 74 LOCK 207 128 175
M/1O 37 131 181
NMI 51 133 184
PCD 41 134 189
PCHK 4 136 199
PLOCK 206 137 201
PWT 40 139 208

RDY 12 150

RESET 48 155

SMI 65 162

SRESET 58 163

STPCLK 73 169

SMIACT 59 172

UP 194 176

WB/WT 64 179

W/R 27 183

185

188

191

198

200

205

Note:

INC = Internal No Connect

Amb5y86 Microprocessor

11

a AMD

PRELIMINARY
2 LOGIC SYMBOL
Clock —»| CLK
Stop Clock ——» STPCLK D31-DO0 :E> Data Bus
Clock Multiplier ——»| CLKMUL
AddressMask ——» A20M
Upgrade | UP
Present DP3-DPO :I>
Voltage Detect <«—— VOLDET Data Parity
PCHK }|—»
{ 28 A31-A4
BRDY |¢———
2 A3-A2 BLAST > } Burst
Address Bus <:
CACHE | Control
(4 E3-BEO
— __ SMe——1 smm
[—>| BS8 SMIACT |—»
Bus Cycle | —>| BS16 Amb5486
DS -
Control <+— o cPU PWT Page
- PCD —— | cacheability
r «—— M/O
<«— DIC WB/WT |¢——)
Bus Cycle ! «—— W/R INV |e——
Definition N aTai"d KEN
<+—— LOCK ———
<4+—— PLOCK FLUSH |e«—— } Cache Control/
- AHOLD Invalidation
EADS |¢——
— INTR AT™M —
Interrupts — NMI
—»| RESET
——» SRESET
HOLD BOFF TDI
BREQ HLDA IGNNE FERR TMS TDO
N J L - v S ~ 7
Bus Arbitration Numeric Error IEEE Test

Reporting

Port Access

12

Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

3 PIN DESCRIPTIONS

The Am5y«86 microprocessor provides the complete in-
terface support offered by the Enhanced Am486 micro-
processor family products. The CLKMUL pin settings
have changed to accommodate the higher operating
speed selection.

A20M

Address Bit 20 Mask (Active Low; Input)

A Low signal on the A20M pin causes the microproces-
sorto mask address line A20 before performing alookup
to the internal cache, or driving a memory cycle on the
bus. Asserting A20M causes the processor to wrap the
address at 1 Mbyte, emulating Real mode operation.
The signal is asynchronous, but must meet setup and
hold times t,o and t,4 for recognition during a specific
clock. During normal operation, A20M should be sam-
pled High at the falling edge of RESET.

A31-A4/A3-A2
Address Lines (Inputs/Outputs)/(Outputs)

Pins A31-A2 define a physical area in memory or indi-
cate an input/output (I/O) device. Address lines A31-A4
drive addresses into the microprocessor to perform
cache line invalidations. Input signals must meet setup
and hold times t,, and t,3. A31-A2 are not driven during
bus or address hold.

ADS

Address Status (Active Low; Output)

A Low output from this pin indicates that a valid bus
cycle definition and address are available on the cycle
definition lines and address bus. ADS is driven active by
the same clock as the addresses. ADS is active Low and is
not driven during bus hold.

AHOLD
Address Hold (Active High; Input)

The external system may assert AHOLD to perform a
cache snoop. In response to the assertion of AHOLD,
the microprocessor stops driving the address bus A31-
A2 in the next clock. The data bus remains active and
data can be transferred for previously issued read or
write bus cycles during address hold. AHOLD is recog-
nized even during RESET and LOCK. The earliest that
AHOLD can be deasserted is two clock cycles after
EADS is asserted to start a cache snoop. If HITM is
activated due to a cache snoop, the microprocessor
completes the current bus activity and then asserts ADS
and drives the address bus while AHOLD is active. This
starts the write-back of the modified line that was the
target of the snoop.

BE3-BEO
Byte Enable (Active Low; Outputs)

The byte enable pins indicate which bytes are enabled
and active during read or write cycles. During the first
cache fill cycle, however, an external system should
ignore these signals and assume that all bytes are
active.

m BE3 for D31-D24
m BE2 for D23-D16
m BEI for D15-D8
= BEO for D7-D0

BE3-BEO are active Low and are not driven during bus
hold.

BLAST
Burst Last (Active Low; Output)

Burst Last goes Low to tell the CPU that the next BRDY
signal completes the burst bus cycle. BLAST is active
for both burst and non-burst cycles. BLAST is active
Low and is not driven during a bus hold.

BOFF
Back Off (Active Low; Input)

This input signal forces the microprocessor to float all
pins normally floated during hold, but HLDA is not as-
serted in response to BOFF. BOFF has higher priority
than RDY or BRDY; if both are returned in the same
clock, BOFF takes effect. The microprocessor remains
in bus hold until BOFF goes High. If a bus cycle is in
progress when BOFF is asserted, the cycle restarts.
BOFF must meet setup and hold times t;g and t;q for
proper operation. BOFF has an internal weak pull-up.

BRDY
Burst Ready Input (Active Low; Input)

The BRDY signal performs the same function during a
burst cycle that RDY performs during a non-burst cycle.
BRDY indicates that the external system has presented
valid data in response to a read, or that the external
system has accepted data in response to a write. BRDY
is ignored when the bus is idle and at the end of the first
clock in a bus cycle. BRDY is sampled in the second
and subsequent clocks of a burst cycle. The data pre-
sented on the data bus is strobed into the microproces-
sor when BRDY is sampled active. If RDY is returned
simultaneously with BRDY, BRDY is ignored and the
cycle is converted to a non-burst cycle. BRDY is active
Low and has a small pull-up resistor, and must satisfy
the setup and hold times t;g and t5.

BREQ
Internal Cycle Pending (Active High; Output)

BREQ indicates that the microprocessor has generated
a bus request internally, whether or not the micropro-
cessor is driving the bus. BREQ is active High and is
floated only during Tri-state Test mode (see FLUSH).

Amb5y86 Microprocessor 13

a AMD

PRELIMINARY

BS8/BS16
Bus Size 8 (Active Low; Input)/
Bus Size 16 (Active Low; Input)

The BS8 and BS16 signals allow the processor to op-
erate with 8-bitand 16-bit 1/0 devices by running multiple
bus cycles to respond to data requests: four for 8-bit
devices, and two for 16-bit devices. The bus sizing pins
are sampled every clock. The microprocessor samples
the pins every clock before RDY to determine the ap-
propriate bus size for the requesting device. The signals
are active Low input with internal pull-up resistors, and
must satisfy setup and hold times t;4 and t;5 for correct
operation. Bus sizing is not permitted during copy-back
or write-back operation. BS8 and BS16 are ignored dur-
ing copy-back or write-back cycles.

CACHE
Internal Cacheability (Active Low; Output)

In Write-through mode, this signal always floats. In
Write-back mode for processor-initiated cycles, a Low
output on this pin indicates that the current read cycle
is cacheable, or that the current cycle is a burst write-
back or copy-back cycle. If the CACHE signal is driven
High during a read, the processor will not cache the data
even if the KEN pin signal is asserted. If the processor
determines that the data is cacheable, CACHE goes
active when ADS is asserted and remains in that state
until the next RDY or BRDY is asserted. CACHE floats
in response to a BOFF or HOLD request.

CLK
Clock (Input)

The CLK input provides the basic microprocessor timing
signal. The CLKMUL input selects the multiplier value
used to generate the internal operating frequency for
the Am5y86 microprocessor family. All external timing
parameters are specified with respect to the rising edge
of CLK. The clock signal passes through an internal
Phase-Lock Loop (PLL).

CLKMUL
Clock Multiplier (Input)

The microprocessor samples the CLKMUL input signal
at RESET to determine the design operating frequency.
An internal pull-up resistor connects to V¢, which se-
lects Clock-tripled mode if the input is High or left float-
ing. For Clock-quadrupled mode, the input must be
pulled Low. For 133-MHz processors, this input must
always be connected to Vg to ensure correct operation.

D31-D0
Data Lines (Inputs/Outputs)

Lines D31-DO0 define the data bus. The signals must
meet setup and hold times t,, and t,3 for proper read
operations. These pins are driven during the second
and subsequent clocks of write cycles.

D/C
Data/Control (Output)
This bus cycle definition pin distinguishes memory and

I/0 data cycles from control cycles. The control cycles
are:

m Interrupt Acknowledge
m Halt/Special Cycle
m Code Read (instruction fetching)

DP3-DPO
Data Parity (Inputs/Outputs)

Data parity is generated on all write data cycles with the
same timing as the data driven by the microprocessor.
Even parity information must be driven back into the
microprocessor on the data parity pins with the same
timing as read information to ensure that the processor
uses the correct parity check. The signals read on these
pins do not affect program execution. Input signals must
meet setup and hold times t,, and t,3. DP3-DPO0 should
be connected to V¢ through a pull-up resistor in sys-
tems not using parity. DP3—-DPO are active High and are
driven during the second and subsequent clocks of write
cycles.

EADS
External Address Strobe (Active Low; Input)

This signal indicates that a valid external address has
been driven on the address pins A31-A4 of the micro-
processor to be used for a cache snoop. This signal is
recognized while the processor is in hold (HLDA is driv-
en active), while forced off the bus with the BOFF input,
or while AHOLD is asserted. The microprocessor ig-
nores EADS at all other times. EADS is not recognized
if HITM is active, nor during the clock after ADS, nor
during the clock after a valid assertion of EADS. Snoops
to the on-chip cache must be completed before another
snhoop cycle is initiated. Table 2 describes EADS when
first sampled. EADS can be asserted every other clock
cycle as long as the hold remains active and HITM re-
mains inactive. INV is sampled in the same clock period
that EADS is asserted. EADS has an internal weak pull-

up.

Table 2. EADS Sample Time

Trigger EADS First Sampled
AHOLD Second clock after AHOLD asserted
HOLD First clock after HLDA asserted
BOFF Second clock after BOFF asserted
Note:

The triggering signal (AHOLD, HOLD, or BOFF) must remain
active for at least 1 clock after EADS to ensure proper oper-
ation.

14 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

FERR
Floating-Point Error (Active Low; Output)

Driven active when a floating-point error occurs, FERR
is similar to the ERROR pin on a 387 math coprocessor.
FERR is included for compatibility with systems using
DOS-type floating-point error reporting. FERR is active
Low, and is not floated during bus hold, except during
Tri-state Test mode (see FLUSH).

FLUSH
Cache Flush (Active Low; Input)

In Write-back mode, FLUSH forces the microprocessor
to write-back all modified cache lines and invalidate its
internal cache. The microprocessor generates two flush
acknowledge special bus cycles to indicate completion
of the write-back and invalidation. In Write-through
mode, FLUSH invalidates the cache without issuing a
special bus cycle. FLUSH is an active Low input that
needs to be asserted only for one clock. FLUSH is asyn-
chronous, but setup and hold times t,q and t,; must be
met for recognition in any specific clock. Sampling
FLUSH Low in the clock before the falling edge of
RESET causes the microprocessor to enter Tri-state
Test mode.

HITM
Hit Modified Line (Active Low; Output)

In Write-back mode (WB/WT=1 at RESET), HITM indi-
cates that an external snoop cache tag comparison hit
a modified line. When a snoop hits a modified line in the
internal cache, the microprocessor asserts HITM two
clocks after EADS is asserted. The HITM signal stays
asserted (Low) until the last BRDY for the corresponding
write-back cycle. At all other times, HITM is deasserted
(High). During RESET, the HITM signal can be used to
detect whether the CPU is operating in Write-back
mode. In Write-back mode (WB/WT=1atRESET), HITM
is deasserted (driven High) until the first snoop that hits
a modified line. In Write-through mode, HITM floats at
all times.

HLDA
Hold Acknowledge (Active High; Output)

The HLDA signal is activated in response to a hold re-
guest presented on the HOLD pin. HLDA indicates that
the microprocessor has given the bus to another local
bus master. HLDA is driven active in the same clock in
which the microprocessor floats its bus. HLDA is driven
inactive when leaving bus hold. HLDA is active High and
remains driven during bus hold. HLDA is floated only
during Tri-state Test mode (see FLUSH).

HOLD
Bus Hold Request (Active High; Input)
HOLD gives control of the microprocessor bus to anoth-

er bus master. In response to HOLD going active, the
microprocessor floats most of its output and input/output

pins. HLDA is asserted after completing the current bus
cycle, burst cycle, or sequence of locked cycles. The
microprocessor remains in this state until HOLD is deas-
serted. HOLD is active High and does not have an in-
ternal pull-down resistor. HOLD must satisfy setup and
hold times t;g and t,q for proper operation.

IGNNE

Ignore Numeric Error (Active Low; Input)

When this pin is asserted, the Am5y486 microprocessor
will ignore a numeric error and continue executing
non-control floating-point instructions. When IGNNE is
deasserted, the Am5y86 microprocessor will freeze on
a non-control floating-pointinstruction if a previous float-
ing-point instruction caused an error. IGNNE has no
effectwhen the NE bitin Control Register 0 is set. IGNNE
is active Low and is provided with a small internal pullup
resistor. IGNNE is asynchronous but must meet setup
and hold times tyg and ty; to ensure recognition in any
specific clock.

INTR
Maskable Interrupt (Active High; Input)

When asserted, this signal indicates that an external
interrupt has been generated. If the internal interrupt
flag is set in EFLAGS, active interrupt processing is ini-
tiated. The microprocessor generates two locked inter-
rupt acknowledge bus cycles in response to the INTR
pin going active. INTR must remain active until the in-
terrupt acknowledges have been performed to ensure
that the interrupt is recognized. INTR is active High and
is not provided with an internal pull-down resistor. INTR
is asynchronous, but must meet setup and hold times
too and ty4 for recognition in any specific clock.

INV
Invalidate (Active High; Input)

The external system asserts INV to invalidate the cache-
line state when an external bus master proposes a write.
It is sampled together with A31-A4 during the clock in
which EADS is active. INV has an internal weak pull-up.
INV is ignored in Write-through mode.

KEN
Cache Enable (Active Low; Input)

KEN determines whether the current cycle is cacheable.
When the microprocessor generates a cacheable cycle
and KEN is active one clock before RDY or BRDY during
the first transfer of the cycle, the cycle becomes a cache
line fill cycle. Returning KEN active one clock before
RDY during the last read in the cache line fill causes the
line to be placed in the on-chip cache. KEN is active
Low and is provided with a smallinternal pull-up resistor.
KEN must satisfy setup and hold times t;4 and t;5 for
proper operation.

Amb5y86 Microprocessor 15

pu |

AMD PRELIMINARY

LOCK
Bus Lock (Active Low; Output)

A Low output on this pin indicates that the current bus
cycle is locked. The microprocessor ignores HOLD
when LOCK is asserted (although it does acknowledge
AHOLD and BOFF). LOCK goes active in the first clock
of the first locked bus cycle and goes inactive after the
last clock of the last locked bus cycle. The last locked
cycle ends when RDY is returned. LOCK is active Low
and is not driven during bus hold. Locked read cycles
are not transformed into cache fill cycles if KEN is active.

M/1O
Memory/Input-Output (Active High/Active Low;
Output)

A High output indicates a memory cycle. A Low output
indicates an I/O cycle.

NMI
Non-Maskable Interrupt (Active High; Input)

A High NMI input signal indicates that an external non-
maskable interrupt has occurred. NMI is rising-edge
sensitive. NMI must be held Low for at least four CLK
periods before this rising edge. The NMI input does not
have an internal pull-down resistor. The NMI input is
asynchronous, but must meet setup and hold times tyq
and t,; for recognition in any specific clock.

PCD
Page Cache Disable (Active High; Output)

This pin reflects the state of the PCD bit in the page
table entry or page directory entry (programmable
through the PCD bit in CR3). If paging is disabled, the
CPU ignores the PCD bit and drives the PCD output
Low. PCD has the same timing as the cycle definition
pins (M/10, D/C, and W/R). PCD is active High and is
not driven during bus hold. PCD is masked by the Cache
Disable bit (CD) in Control Register 0 (CRO).

PCHK
Parity Status (Active Low; Output)

Parity status is driven on the PCHK pin the clock after
RDY for read operations. The parity status reflects data
sampled at the end of the previous clock. A Low PCHK
indicates a parity error. Parity status is checked only for
enabled bytes as is indicated by the byte enable and
bus size signals. PCHK is valid only in the clock imme-
diately after read data is returned to the microprocessor;
atall other times PCHK s inactive High. PCHK s floated
only during Tri-state Test mode (see FLUSH).

PLOCK
Pseudo-Lock (Active Low; Output)

In Write-back mode, the processor forces the output
High and the signal is always read as inactive. In Write-
through mode, PLOCK operates normally. When
asserted, PLOCK indicates that the current bus

transaction requires more than one bus cycle. Examples
of such operations are segment table descriptor reads
(8 bytes) and cache line fills (16 bytes). The micropro-
cessor drives PLOCK active until the addresses for the
last bus cycle of the transaction have been driven,
whether or not RDY or BRDY is returned. PLOCK is a
function of the BS8, BS16, and KEN inputs. PLOCK
should be sampled on the clock when RDY is returned.
PLOCK is active Low and is not driven during bus hold.

PWT
Page Write-Through (Active High; Output)

This pin reflects the state of the PWT bit in the page
table entry or page directory entry (programmable
through the PWT bit in CR3). If paging is disabled, the
CPU ignores the PWT bit and drives the PWT output
Low. PWT has the same timing as the cycle definition
pins (M/10, D/C, and W/R). PWT is active High and is
not driven during bus hold.

RESET
Reset (Active High; Input)

RESET forces the microprocessor to initialize. The mi-
croprocessor cannot begin execution of instructions un-
til at least 1 ms after Vo and CLK have reached their
proper DC and AC specifications. To ensure proper mi-
croprocessor operation, the RESET pin should remain
active during this time. RESET is active High. RESET
is asynchronous but must meet setup and hold times
tog and ty; to ensure recognition on any specific clock.

RDY
Non-Burst Ready (Active Low; Input)

A Low input on this pin indicates that the current bus
cycle is complete, thatiis, either the external system has
presented valid data on the data pins in response to a
read, or the external system has accepted data from the
microprocessor in response to a write. RDY is ignored
when the bus is idle and at the end of the bus cycle’s
first clock. RDY is active during address hold. Data can
be returned to the processor while AHOLD is active.
RDY is active Low and does not have an internal pull-
up resistor. RDY must satisfy setup and hold times t;
and t, for proper chip operation.

SMI
SMM Interrupt (Active Low; Input)

A Low signal on the SMI pin signals the processor to
enter System Management mode (SMM). SMI is the
highest level processor interrupt. The SMI signal is rec-
ognized on an instruction boundary, similar to the NMI
and INTR signals. SMI is sampled on every rising clock
edge. SMlis afalling-edge sensitive input. The SMlinput
has an internal pull-up resister. Recognition of SMI is
guaranteed in a specific clock if it is asserted synchro-
nously and meets the setup and hold times. If SMI is
asserted asynchronously, it must go High for a minimum
of two clocks before going Low, and it must remain Low

16 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

for at least two clocks to guarantee recognition. When
the CPU recognizes SMI, it enters SMM before execut-
ing the next instruction and saves internal registers in
SMM space.

SMIACT
SMM Interrupt Active (Active Low; Output)

SMIACT goes Low in response to SMI. It indicates that
the processor is operating under SMM control. SMIACT
remains Low until the processor receives a RESET sig-
nal or executes the Resume Instruction (RSM) to leave
SMM. This signal is always driven. It does not float dur-
ing bus HOLD or BOFF.

Note: Do not use SRESET to exit from SMM. The sys-
tem should block SRESET during SMM.

SRESET
Soft Reset (Active High; Input)

The CPU samples SRESET on every rising clock edge.
If SRESET is sampled active, the SRESET sequence
begins on the next instruction boundary. SRESET
resetsthe processor, but, unlike RESET, does not cause
it to sample UP or WB/WT, or affect the FPU, cache, CD
and NW bits in CRO, and SMBASE. SRESET is asyn-
chronous and must meet the same timing as RESET.
The SRESET input has an internal pull-down resistor.

STPCLK
Stop Clock (Active Low; Input)

A Low input signal indicates a request has been made
to turn off the CLK input. When the CPU recognizes a
STPCLK, the processor:

m Stops execution on the next instruction boundary
(unless superseded by a higher priority interrupt)

m Empties all internal pipelines and write buffers
m Generates a Stop Grant acknowledge bus cycle

STPCLK is active Low and has an internal pull-up re-
sistor. STPCLK is asynchronous, but it must meet setup
and hold times tyg and t,4 to ensure recognition in any
specific clock. STPCLK must remain active until the Stop
Clock special bus cycle is issued and the system returns
either RDY or BRDY.

TCK
Test Clock (Input)

Test Clock provides the clocking function for the JTAG
boundary scan feature. TCK clocks state information
and data into the component on the rising edge of TCK
on TMS and TDI, respectively. Data is clocked out of
the component on the falling edge of TCK on TDO.

TDI
Test Data Input (Input)

TDI is the serial input that shifts JTAG instructions and
data into the tested component. TDI is sampled on the

rising edge of TCK during the SHIFT-IR and the
SHIFT-DR TAP (Test Access Port) controller states.
During all other TAP controller states, TDI is ignored.
TDI uses an internal weak pull-up.

TDO
Test Data Output (Active High; Output)

TDO is the serial output that shifts JTAG instructions
and data out of the component. TDO is driven on the
falling edge of TCK during the SHIFT-IR and SHIFT-DR
TAP controller states. Otherwise, TDO is tri-stated.

TMS
Test Mode Select (Active High; Input)

TMSisdecoded by the JTAG TAP to selectthe operation
of the test logic. TMS is sampled on the rising edge of
TCK. To guarantee deterministic behavior of the TAP
controller, the TMS pin has an internal pull-up resistor.

UP

Write/Read (Input)

The processor samples the Upgrade Present (UP) pin
in the clock before the falling edge of RESET. Ifitis Low,
the processor tri-states its outputs immediately. UP
must remain asserted to keep the processor inactive.
The pin uses an internal pull-up resistor.

VOLDET—(168-pin PGA package only)
Voltage Detect (Output)

VOLDET provides an external signal to allow the system
to determine the CPU input power level (3 V or 5V). For
Amb5,86 processors, the pin ties internally to Vgg.

WB/WT
Write-Back/Write-Through (Input)

If the processor samples WB/WT High at RESET, the
processor is configured in Write-back mode and all sub-
sequent cache line fills sample WB/WT on the same
clock edge in which it finds either RDY or the first BRDY
of a burst transfer to determine if the cache line is des-
ignated as Write-back mode or Write-through. If the sig-
nal is Low on the first BRDY or RDY, the cache line is
write-through. Ifthe signalis High, the cache line is write-
back. If WB/WT is sampled Low at RESET, all cache
line fills are write-through. WB/WT has an internal weak
pull-down.

W/R
Write/Read (Output)

A High output indicates a write cycle. A Low output in-
dicates a read cycle.

Note: The Am5y86 microprocessor does not use the
Vees pin used by some 3-V, clock-tripled, 486-based
processors. The corresponding pin on the Am5y86 mi-
croprocessor is an Internal No Connect (INC).

Amb5y86 Microprocessor 17

a AMD

PRELIMINARY

4 FUNCTIONAL DESCRIPTION

4.1 Overview

Amb5,86 microprocessors use a 32-bit architecture with
on-chip memory managementand cache memory units.
The instruction set includes the complete 486 micropro-
cessor instruction set along with extensions to serve the
new extended applications. All software written for the
486 microprocessor and previous members of the x86
architectural family can run on the Am5y86 micropro-
cessor without modification.

The on-chip Memory Management Unit (MMU) is com-
pletely compatible with the 486 MMU. The MMU in-
cludes a segmentation unit and a paging unit.
Segmentation allows management of the logical ad-
dress space by providing easy data and code relocati-
bility and efficient sharing of global resources. The
paging mechanism operates beneath segmentationand
is transparent to the segmentation process. Paging is
optional and can be disabled by system software. Each
segment can be divided into one or more 4-Kbyte seg-
ments. To implement a virtual memory system, the
Amb5,86 microprocessor supports full restartability for
all page and segment faults.

4.2 Memory

Memory is organized into one or more variable length
segments, each up to 4 Gbytes (232 bytes). A segment
can have attributes associated with it, including its lo-
cation, size, type (i.e., stack, code, or data), and protec-
tion characteristics. Each task on a microprocessor can
have a maximum of 16,381 segments, each up to 4
Gbytes. Thus, each task has a maximum of 64 Thytes
of virtual memory.

The segmentation unit provides four levels of protection
for isolating and protecting applications and the operat-
ing system from each other. The hardware-enforced
protection allows high-integrity system designs.

4.3 Modes of Operation

The Am5y86 microprocessor has four modes of opera-
tion: Real Address mode (Real mode), Virtual 8086 Ad-
dress mode (Virtual mode), Protected Address mode
(Protected mode), and System Management mode
(SMM).

4.3.1 Real Mode

In Real mode, the Am5y86 microprocessor operates as
a fast 8086. Real mode is required primarily to set up
the processor for Protected mode operation.

4.3.2 Virtual Mode

In Virtual mode, the processor appears to be in Real
mode, but can use the extended memory accessing of
Protected mode.

4.3.3 Protected Mode

Protected mode provides access to the sophisticated
memory management paging and privilege capabilities
of the processor.

4.3.4 System Management Mode

SMM is a special operating mode described in detail in
Section 7.

4.4 Cache Architecture

The Am5y86 microprocessor family supports a superset
architecture of the standard 486 cache implementation.
This architectural enhancement improves not only CPU
performance, but total system performance.

4,41 Write-Through Cache

The standard 486D X-type write-through cache architec-
ture is characterized by the following:

m External read accesses are placed in the cache if
they meet proper caching requirements.

m Subsequent reads to the data in the cache are made
if the address is stored in the cache tag array.

m Write operations to a valid address in the cache are
updated in the cache and to external memory. This
data writing technique is called write-through.

The write-through cache implementation forces all
writes to flow through to the external bus and back to
main memory. Consequently, the write-through cache
generates a large amount of bus traffic on the external
data bus.

4.4.2 Write-Back Cache

The microprocessor write-back cache architecture is
characterized by the following:

m External read accesses are placed in the cache if
they meet proper caching requirements.

m Subsequent reads to the data in the cache are made
if the address is stored in the cache tag array.

m Write operations to a valid address in the cache that
is in the write-through (shared) state is updated in
the cache and to external memory.

m Write operations to a valid address in the cache that
is in the write-back (exclusive or modified) state is
updated only in the cache. External memory is not
updated at the time of the cache update.

m Modified data is written back to external memory
when the modified cache line is being replaced with
a new cache line (copy-back operation) or an exter-
nal bus master has snooped a modified cache line
(write-back).

The write-back cache feature significantly reduces the

amount of bus traffic on the external bus; however, it

also adds complexity to the system design to maintain

memory coherency. The write-back cache requires en-

18 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

hanced system support because the cache may contain
data that is not identical to data in main memory at the
same address location.

45 Write-Back Cache Protocol

The Am5486 microprocessor family write-back cache
coherency protocol reduces bus activity while maintain-
ing data coherency in a multimaster environment. The
cache coherency protocol offers the following advan-
tages:

m No unnecessary bus traffic. The protocol dynamical-
ly identifies shared data to the granularity of a cache
line. This dynamic identification ensures that the traf-
fic on the external bus is the minimum necessary to
ensure coherency.

m Software-transparent. Because the protocol gives
the appearance of a single, unified memory, soft-
ware does not have to maintain coherency or identify
shared data. Application software developed for a
system without a cache can run without modification.
Software support is required only in the operating
system to identify non-cacheable data regions.

The Am5486 microprocessor family implements a mod-
ified MESI protocol on systems with write-back cache
support. MESI allows a cache line to exist in four states:
modified, exclusive, shared, and invalid. The Am5y86
microprocessor family allocates memory in the cache
due to aread miss. Write allocation is not implemented.
To maintain coherency between cache and main mem-
ory, the MESI protocol has the following characteristics:

m The system memory is always updated during a
snoop when a modified line is hit.

m If a modified line is hit by another master during
snooping, the master is forced off the bus and the
snooped cache writes back the modified line to the
system memory. After the snooped cache completes
the write, the forced-off bus master restarts the ac-
cess and reads the modified data from memory.

451 Cache Line Overview

To implement the Am5y86 microprocessor cache co-
herency protocol, each tag entry is expanded to 2 bits:
S1 and SO. Each tag entry is associated with a cache
line. Table 3 shows the cache line organization.

Table 3. Cache Line Organization

4.5.2 Line Status and Line State

A cache line can occupy one of four legal states as
indicated by bits SO and S1. The line states are shown
in Table 4. Each line in the cache is in one of these
states. The state transition is induced either by the pro-
cessor or during snooping from an external bus master.

Table 4. Legal Cache Line States

Data Words (32 Bits) Address Tag and Status
DO Address Tag, S1, SO
D1
D2
D3

S1 SO Line State
0 0 Invalid
0 1 Exclusive
1 0 Modified
1 1 Shared
4.5.2.1 Invalid

An invalid cache line does not contain valid data for any
external memory location. An invalid line does not par-
ticipate in the cache coherency protocol.

4.5.2.2 Exclusive

An exclusive line contains valid data for some external
memory location. The data exactly matches the data in
the external memory location.

4.5.2.3 Shared

A shared line contains valid data for an external memory
location, the data is shared by another cache, and the
shared data matches the data in the external memory
exactly; or the cache line is in Write-through mode.

4.5.2.4 Modified

A modified line contains valid data for an external mem-
ory location. However, the data does not match the data
in the external location because the processor has mod-
ified the data since it was loaded from the external mem-
ory. A cache that contains a modified line is responsible
for ensuring that the data is properly maintained. This
means that in the case of an external access to that line
from another external bus master, the modified line is
first written back to the external memory before the other
external bus master can complete its access. Table 5
shows the MESI cache line states and the correspond-
ing availability of data.

Amb5y86 Microprocessor 19

a AMD

PRELIMINARY

Table 5. MESI Cache Line Status

Situation |Modified | Exclusive | Shared Invalid
Line valid? |Yes Yes Yes No
External
memo out-of- 1, i valid status
is ry date unknown
A write to |does not goes to goes

. doesnotgo |the bus .
this cache |go to the directly to

. to the bus |and
line... bus the bus

updates

4.6 Cache Replacement Description

The cache line replacement algorithm uses the standard
Am486 CPU pseudo LRU (Least-Recently Used) strat-
egy. When a line must be placed in the internal cache,
the microprocessor first checks to see if there is an in-
valid line available in the set. If no invalid line is available,
the LRU algorithm replaces the least-recently used
cache line in the four-way set with the new cache line.
If the cache line for replacement is modified, the modi-
fied cache line is placed into the copy-back buffer for
copying back to external memory, and the new cache
line is placed into the cache. This copy-back ensures
that the external memory is updated with the modified
data upon replacement.

4.7 Memory Configuration

In computer systems, memory regions require specific
caching and memory write methods. For example, some
memory regions are non-cacheable while others are
cacheable but are write-through. To allow maximum
memory configuration, the microprocessor supports
specific memory region requirements. All bus masters,
such as DMA controllers, must reflect all data transfers
on the microprocessor local bus so that the micropro-
cessor can respond appropriately.

4.7.1 Cacheability

The Am5y486 CPU caches data based on the state of
the CD and NW bits in CRO, in conjunction with the KEN
signal, at the time of a burst read access from memory.
If the WB/WT signal is Low during the first BRDY, KEN
meets the standard setup and hold requirements and
the four 32-bit doublewords are still placed in the cache.
However, all cacheable accesses in this mode are con-
sidered write-through. When the WB/WT is High during
the first BRDY, the entire four 32-bit doubleword transfer
is considered write-back.

Note: The CD bitin CRO enables (0) or disables (1) the
internal cache. The NW bit in CRO enables (0) or dis-
ables (1) write-through and snooping cycles. RESET
setsCDand NW'to 1. Unlike RESET, however, SRESET
does not invalidate the cache nor does it modify the
values of CD and NW in CRO.

4.7.2 Write-Through/Write-Back

If the CPU is operating in Write-back mode (i.e., the
WBAMWT pin was sampled High at RESET), the WBANT

pin indicates whether an individual write access is exe-
cuted as write-through or write-back. The Am5y86 mi-
croprocessor does this on an access-by-access basis.
Once the cache line is in the cache, the STATUS bit is
tested each time the processor writes to the cache line
or a tag compare results in a hit during Bus-watching
mode. If the WBAVT signal is Low during the first BRDY
of the cache line read access, the cache line is consid-
ered a write-through access. Therefore, all writes to this
location in the cache are reflected on the external bus,
even if the cache line is write protected.

4.8 Cache Functionality in Write-Back
Mode

The description of cache functionality in Write-back
mode is divided into two sections: processor-initiated
cache functions and snooping actions.

4.8.1 Processor-lnitiated Cache Functions and
State Transitions

The microprocessor contains two new buffers for use
with the MESI protocol support: the copy-back buffer
and the write-back buffer. The processor uses the copy-
back buffer for cache line replacement of modified lines.
The write-back buffer is used when an external bus mas-
ter hits a modified line in the cache during a snoop op-
eration and the cache line is designated for write-back
tomain memory. Each bufferis four doublewordsin size.
Figure 1 shows a diagram of the state transitions in-
duced by the local processor. When a read miss occurs,
the line selected for replacement remains in the modified
state until overwritten. A copy of the modified line is sent
to the copy-back buffer to be written back after replace-
ment. When reload has successfully completed, the line
is set either to the exclusive or the shared state, depend-
ing on the state of PWT and WB/WT signals.

Read_Miss

Read_Miss [(WB/WT = 0) + (PWT = 1)]

(WB/WT = 1) «
(PWT =0)

Write_Hit + Read_Hit

Note: Write_Hit
generates external

Write_Hit bus cycle.

Modified

Read_Hit
+ Write_Hit
Figure 1. Processor-Induced Line Transitions in
Write-Back Mode

20 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

If the PWT signal is 0, the external WB/WT signal de-
termines the new state of the line. If the WB/WT signal
was asserted to 1 during reload, the line transits to the
exclusive state. If the WB/WT signal was 0, the line
transits to the shared state. If the PWT signal is 1, it
overrides the WB/WT signal, forcing the line into the
shared state. Therefore, if paging is enabled, the soft-
ware programmed PWT bit can override the hardware
signal WB/WT.

Until the line is reallocated, a write is the only processor
action that can change the state of the line. If the write
occurs to a line in the exclusive state, the data is simply
written into the cache and the line state is changed to
modified. The modified state indicates that the contents
of the line require copy-back to the main memory before
the line is reallocated.

If the write occurs to a line in the shared state, the cache
performs awrite of the data on the external bus to update
the external memory. The line remains in the shared
state until it is replaced with a new cache line or until it
is flushed. In the modified state, the processor continues
to write the line without any further external actions or
state transitions.

Ifthe PWT or PCD bits are changed for a specified mem-
ory location, the tag bits in the cache are assumed to
be correct. To avoid memory inconsistencies with re-
spect to cacheability and write status, a cache copy-
back and invalidation should be invoked either by using
the WBINVD instruction or asserting the FLUSH signal.

4.8.2 Snooping Actions and State Transitions

To maintain cache coherency, the CPU must allow
snhooping by the current bus master. The bus master
initiates a snoop cycle to check whether an address is
cached in the internal cache of the microprocessor. A
snoop cycle differs from any other cycle in that it is ini-
tiated externally to the microprocessor, and the signal
for beginning the cycle is EADS instead of ADS. The
address bus of the microprocessor is bidirectional to
allow the address of the snoop to be driven by the sys-
tem. A snoop access can begin during any hold state:

= While HOLD and HLDA are asserted
m While BOFF is asserted
= While AHOLD is asserted

In the clock in which EADS is asserted, the micropro-
cessor samples the INV input to qualify the type of in-
quiry. INV specifies whether the line (if found) must be
invalidated (i.e., the MESI status changes to Invalid or
). Alineisinvalidated ifthe snoop access was generated
due to a write of another bus master. This is indicated
by INV set to 1. In the case of a read, the line does not
have to be invalidated, which is indicated by INV set to O.

The core system logic can generate EADS by watching
the ADS from the current bus master, and INV by watch-

ing the W/R signal. The microprocessor compares the
address of the snoop request with addresses of lines in
the cache and of any line in the copy-back buffer waiting
to be transferred on the bus. It does not, however, com-
pare with the address of write-miss data in the write
buffers. Two clock cycles after sampling EADS, the mi-
croprocessor drives the results of the snoop onthe HITM
pin. If HITM is active, the line was found in the modified
state; if inactive, the line was in the exclusive or shared
state, or was not found.

Figure 2 shows a diagram of the state transitions in-
duced by snooping accesses.

EADS=0*INV =0
*FLUSH = 1
(HITM asserted

+ write-back) \

EADS=0*INV=1
+FLUSH =0
(HITM asserted

+ write-back)

Figure 2. Snooping State Transitions

4.8.2.1 Difference between Snooping
Access Cases

Snooping accesses are external accesses to the micro-
processor. As described earlier, the snooping logic has
a set of signals independent from the processor-related
signals. Those signals are:

m EADS
m NV
m HITM

In addition to these signals, the address bus is required
as an input. This is achieved by setting AHOLD, HOLD,
or BOFF active.

Snooping can occur in parallel with a processor-initiated
accessthat has already been started. The two accesses
depend on each other only when a modified line is writ-
ten back. In this case, the snoop requires the use of the
cycle control signals and the data bus. The following
sections describe the scenarios for the HOLD, AHOLD,
and BOFF implementations.

Amb5y86 Microprocessor 21

a AMD

PRELIMINARY

4.8.2.2 HOLD Bus Arbitration Implementation

The HOLD/HLDA bus arbitration scheme is used prima-
rily in systems where all memory transfers are seen by
the microprocessor. The HOLD/HLDA bus arbitration
scheme permits simple write-back cache design while
maintaining a relatively high performing system. Figure
3 shows atypical system block diagram for HOLD/HLDA
bus arbitration.

Note: To maintain proper system timing, the HOLD
signal must remain active for one clock cycle after HITM
transitions active. Deassertion of HOLD in the same
clock cycle as HITM assertion may lead to unpredictable
processor behavior.

Local Bus
CPU Peripheral
Address Bus
Data Bus
| I
I/0O Bus
L2 Cache Interface
Address Bus
Data Bus
DRAM [
Slow
Peripheral

Figure 3. Typical System Block Diagram
for HOLD/HLDA Bus Arbitration

4.8.2.2.1 Processor-Induced Bus Cycles

In the following scenarios, read accesses are assumed
to be cache line fills. The cases also assume that the
core system logic does not return BRDY or RDY until
HITM is sampled. The addition of wait states follows the
standard 486 bus protocol. For demonstration purpos-
es, only the zero wait state approach is shown. Table 6
explains the key to switching waveforms.

Table 6. Key to Switching Waveforms

Waveform Inputs Outputs
Must be steady Will be steady
May change from Will change
HtoL fromHto L
May change from Will change
LtoH fromLtoH
Don't care; any Changing;

XXX
AR

change permitted ~ state unknown
Center line is
High-impedance

Does not apply
“Off” state

4.8.2.2.2 External Read

Scenario: The data resides in external memory (see
Figure 4).

Step 1 The processor starts the external read access
by asserting ADS = 0 and W/R = 0.

Step 2 WB/WT is sampled in the same cycle as BRDY.
If WB/WT = 1, the data resides in a write-back
cacheable memory location.

Step 3 The processor completes its burst read and as-
serts BLAST.

4.8.2.2.3 External Write

Scenario: The data is written to the external memory
(see Figure 5).

Step 1 The processor starts the external write access
by asserting ADS = 0 and W/R = 1.

Step 2 The processor completes its write to the core
system logic.

4.8.2.2.4 HOLD/HLDA External Access Timing

In systems with two or more bus masters, each bus
master is equipped with individual HOLD and HLDA con-
trol signals. These signals are then centralized to the
core system logic that controls individual bus masters,
depending on bus request signals and the HITM signal.

22 Amb5y86 Microprocessor

PRELIMINARY

X n+4

I |
BRDV \\\\\.\\\\\l\\\@\D\: AT\
| |

n \ 1 X n+4

\

KEN W\

|

I
I I
| I
| |
WB/WT //////I//////{//
1 |
: .

w777

Note:
The circled numbers in this figure represent the steps in section 4.8.2.2.2.

Figure 4. External Read

CLK | | | | | | | |

ADR X I n_, : X
M/O 777 | I I —
WIR /77 : I BERNNNNN\Y
DS TN ./ | TSSS
| |
|
|

BLAST \\\\\\\\\:\\\ |
BRDY /////////J/////////,I//////}\CT_): [
[

|
Data 4 [n

>_

|
WB/WT /////////(/////////:'/////////://////
sorr /L// | ! IERNNNN

Note:
The circled numbers in this figure represent the steps in section 4.8.2.2.3.

Figure 5. External Write

Amb5y86 Microprocessor

e\ AvD PRELIMINARY

CLK | |

I I N

ADR X valid i X i

| |

INV X valid | X |

| |

EADS E\
HITM

HOLD ZZ/

woa /[[/ 1]

Note:
The circled numbers in this figure represent the steps in section 4.8.3.1.

Figure 6. Snoop of On-Chip Cache That Does Not Hit a Line

CLK |

|
ADR | X valid | X
| |
INV | X valid | X
| ¥
EADS | \ E| /
|
| [\
AITM !
|
|
|

HOLD _L/ |

s [////])

Note:
The circled numbers in this figure represent the steps in section 4.8.3.2.

Figure 7. Snoop of On-Chip Cache That Hits a Non-modified Line

24 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

4.8.3 External Bus Master Snooping Actions

The following scenarios describe the snooping actions
of an external bus master.

4.8.3.1

Scenario: A snoop of the on-chip cache does not hit a
line, as shown in Figure 6.

Snoop Miss

Step 1 The microprocessor is placed in Snooping
mode with HOLD. HLDA must be High for a
minimum of one clock cycle before EADS as-
sertion. In the fastest case, this means that
HOLD was asserted one clock cycle before the
HLDA response.

Step 2 EADS and INV are applied to the microproces-
sor. If INVis 0, aread access caused the snoop-
ing cycle. If INV is 1, a write access caused the
shooping cycle.

Step 3 Two clock cycles after EADS is asserted, HITM
becomes valid. Because the addressed line is

not in the snooping cache, HITM is 1.

4.8.3.2 Snoop Hit to a Non-Modified Line

Scenario: The snoop of the on-chip cache hits a line,
and the line is not modified (see Figure 7).

Step 1 The microprocessor is placed in Snooping
mode with HOLD. HLDA must be High for a
minimum of one clock cycle before EADS as-

sertion. In the fastest case, this means that
HOLD was asserted one clock cycle before the
HLDA response.

Step 2 EADS and INV are applied to the microproces-
sor. IfINVis 0, aread access caused the snoop-
ing cycle. If INV is 1, a write access caused the
snooping cycle.

Step 3 Two clock cycles after EADS is asserted, HITM
becomes valid. In this case, HITM is 1.

4.8.4 Write-Back Case

Scenario: Write-back accesses are always burst writes
with a length of four 32-bit words. For burst writes, the
burst always starts with the microprocessor line offset
at 0. HOLD must be deasserted before the write-back
can be performed (see Figure 8).

Step 1 HOLD places the microprocessor in Snooping
mode. HLDA must be High for a minimum of
one clock cycle before EADS assertion. In the
fastest case, this means that HOLD asserts one
clock cycle before the HLDA response.

Step 2 EADS and INV are asserted. If INV is 0, snoop-
ing is caused by a read access. If INV is 1,
snooping is caused by a write access. EADS is
not sampled again until after the modified line
is written back to memory. It is detected again

as early as in Step 11.

N
/

X_nX .
| ! !

X X8 YT X

I
| |
float:ng/tri-s}ated

1
N
\.

ffloatinglltri-state;d

AN\

E
_|
<

|
[
i
|
I
m:m
|
I
I
I

|
1 iA@

HOLD /

HLDA

Data

External

bus master's
BOFF signal

Note:

i

|

|

|

I

|

|

| | |
{_n ID(n+4|)(n+8=Xn+1zX I>
I |
! I

I
EJ
I
i
I
|
[
I

The circled numbers in this figure represent the steps in section 4.8.4.
Figure 8. Snoop That Hits a Modified Line (Write-Back)

Amb5y86 Microprocessor 25

a AMD

Step 3 Two clock cycles after EADS is asserted, HITM
becomesvalid, andis 0 because the line is mod-
ified.

Step 4 In the next clock, the core system logic deas-

serts the HOLD signal in response to the

HITM = 0 signal. The core system logic backs

off the current bus master at the same time so

that the microprocessor can access the bus.

HOLD can be reasserted immediately after

ADS is asserted for burst cycles.

Step 5 The snooping cache starts it's write-back of the
modified line by asserting ADS =0, CACHE = 0,
and W/R = 1. The write access is a burst write.
The number of clock cycles between deassert-
ing HOLD to the snooping cache and first
asserting ADS for the write-back cycles can
vary. In this example, itis one clock cycle, which
is the shortest possible time. Regardless of the
number of clock cycles, the start of the write-

back is seen by ADS going Low.

The write-back access is finished when BLAST
and BRDY both are 0.

Step 6

Step 7 In the clock cycle after the final write-back ac-

cess, the processor drives HITM back to 1.

Step 8 HOLD is sampled by the microprocessor.

Step 9 One cycle after sampling HOLD High, the mi-
croprocessor transitions HLDA transitions to 1,
acknowledging the HOLD request.

Step 10 The core system logic removes hold-off control
to the external bus master. This allows the ex-
ternal bus master toimmediately retry the abort-
ed access. ADS is strobed Low, which
generates EADS Low in the same clock cycle.

Step 11 The bus master restarts the aborted access.
EADS and INV are applied to the microproces-
sor as before. This starts another snoop cycle.

The status of the addressed line is now either shared
(INV = 0) or is changed to invalid (INV = 1).

4.8.5 Write-Back and Pending Access

Scenatrio: The following occurs when, in addition to the
write-back operation, other bus accesses initiated by
the processor associated with the snooped cache are
pending. The microprocessor gives the write-back ac-
cess priority. This implies that if HOLD is deasserted,
the microprocessor first writes back the modified line
(see Figure 9).

CLK N
ADR Y T ey e ——C T T
MO I | | I I - — ' ! ! ' I | | !] — |
SAOE | | | f f \
CAE HE ! ﬂoatling/tri-stated ! !I L/ ! ! l l ! ! ! ! !
WIR ! : ! — d I | ! ! | | I I
ADS [I I N B B 2 —t—t—t——t\ I/ [N
SLAST | | | | I |, | | | | | | |] _:_/_x_\|_
T T T 1 | | | ﬁ—g/ B ? |]
| | | | | | |
BRDY \\\\i\\\\;\\\\‘|{\\\\l\\\\l\\\\‘|{\\\\i\\\ :m:m :m | | | | | :/““| “W|“§
| | | | | | | | | | | | | | | | | |
INV ' Yvalid X ' ! j ' ' ! ' "X vaiid ' ' ' ' '
| | | | | I | | | | | | | | | | |
EADS | |ﬁ N
O O < F T (O [N SR B | |
ATV —_— IS —t—t— : I
L Nt @1 @ o
HOLD /| @ T C e e N s e I R N R N // 7 74/ 7
' ' ' i ' | I | QL /—t—
MDA : o : | : : : | : : I T
oaa L R R e) CE D R S ey ey sy Cb_!7|
External ' ' ' '
bus master's | | | |\ | | | | | | | | | | | | |6
BOFF signal | I I I I I I I I I I I I I I | I I
Note:
The circled numbers in this figure represent the steps in section 4.8.5.
Figure 9. Write-Back and Pending Access
26 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

Step 1 HOLD places the microprocessor in Snooping
mode. HLDA must be High for a minimum of
one clock cycle before EADS assertion. In the
fastest case, this means that HOLD asserts one

clock cycle before the HLDA response.

Step 2 EADS and INV are asserted. If INV is 0, snoop-
ing is caused by a read access. If INV is 1,
shooping is caused by a write access. EADS is
not sampled again until after the modified line
is written back to memory. It is detected again
as early as in Step 11.

Step 3 Two clock cycles after EADS is asserted, HITM
becomes valid, and is 0 because the line is

modified.

Step 4 Inthe nextclockthe core systemlogic deasserts
the HOLD signal in response to the HITM = 0.
The core system logic backs off the current bus
master at the same time so that the micropro-
cessor can access the bus. HOLD can be re-
asserted immediately after ADS is asserted for

burst cycles.

Step 5 The snooping cache starts its write-back of the
modified line by asserting ADS =0, CACHE = 0,
and W/R = 1. The write access is a burst write.
The number of clock cycles between deassert-
ing HOLD to the snooping cache and first as-
serting ADS for the write-back cycles can vary.
In this example, it is one clock cycle, which is

the shortest possible time. Regardless of the

number of clock cycles, the start of the write-
back is seen by ADS going Low.

The write-back access is finished when BLAST
and BRDY both are 0.

Step 6

Step 7 In the clock cycle after the final write-back ac-

cess, the processor drives HITM back to 1.

Step 8 HOLD is sampled by the microprocessor.

Step 9 A minimum of 1 clock cycle after the completion
of the pending access, HLDA transitions to 1,

acknowledging the HOLD request.

Step 10 The core system logic removes hold-off control
to the external bus master. This allows the ex-
ternal bus master toimmediately retry the abort-
ed access. ADS is strobed Low, which
generates EADS Low in the same clock cycle.

Step 11 The bus master restarts the aborted access.
EADS and INV are applied to the microproces-
sor as before. This starts another snoop cycle.

The status of the addressed line is now either shared
(INV = 0) or is changed to invalid (INV = 1).

4.8.5.1 HOLD/HLDA Write-Back Design
Considerations

When designing a write-back cache system that uses
HOLD/HLDA as the bus arbitration method, the follow-
ing considerations must be observed to ensure proper
operation (see Figure 10).

L

BLAST

AN\ 1 AN\

|
Ry
&)
<

| |
ANMNARNNANANNNNNNNN :\\\\‘

\

Valid Hdld AssertioH

|

|

—
| |
\\\\\\\\\lk\\\\\\ :
| |

| |

| |

| |

| |

|
/	

Figure 10. Valid HOLD Assertion During Write-Back

Amb5y86 Microprocessor

27

a AMD

PRELIMINARY

Step 1 During a snoop to the on-chip cache that hits a
modified cache line, the HOLD signal cannot
be deasserted to the microprocessor until the
next clock cycle after HITM transitions active.

Step 2 Afterthewrite-back has commenced, the HOLD
signal should be asserted no earlier than the
next clock cycle after ADS goes active, and no
later than in the final BRDY of the last write.
Asserting HOLD later than the final BRDY may
allow the microprocessor to permit a pending
access to begin.

Step 3 If RDY is returned instead of BRDY during a
write-back, the HOLD signal can be reasserted
at any time starting one clock after ADS goes
active in the first transfer up to the final transfer
when RDY is asserted. Asserting RDY instead
of BRDY will not break the write-back cycle if
HOLD is asserted. The processor ignores
HOLD until the final write cycle of the write-back.

4.8.5.2 AHOLD Bus Arbitration Implementation

The use of AHOLD as the control mechanism is often
found in systems where an external second-level cache
is closely coupled to the microprocessor. This tight cou-
pling allows the microprocessor to operate with the least
amount of stalling from external snooping of the on-chip
cache. Additionally, snooping of the cache can be per-
formed concurrently with an access by the microproces-
sor. This feature further improves the performance of
the total system (see Figure 11).

Note: To maintain proper system timing, the AHOLD
signal must remain active for one clock cycle after HITM
transitions active. Deassertion of AHOLD in the same
clock cycle as HITM assertion may lead to unpredictable
processor behavior.

CPU
Address Bus |

Data Bus

L2 Cache
Address Bus

Data Bus

|
1/0 Bus
Interface

Address Bus

DRAM

Data Bus
1
Slow
Peripheral

Figure 11. Closely Coupled Cache Block Diagram

The following sections describe the snooping scenarios
for the AHOLD implementation.

4.8.5.3 Normal Write-Back

Scenario: This scenario assumes that a processor-ini-
tiated access has already started and that the external
logic can finish that access even without the address
being applied after the first clock cycle. Therefore, a
shooping access with AHOLD can be done in parallel.
In this case, the processor-initiated access is finished
first, then the write-back is executed (see Figure 12).

The sequence is as follows:

Step 1 The processor initiates an external, simple,
non-cacheable read access, strobing ADS = 0
and W/R = 0. The address is driven from the
CPU.

Step 2 In the same cycle, AHOLD is asserted to indi-
cate the start of snooping. The address bus
floats and becomes an input in the next clock
cycle.

Step 3 During the next clock cycles, the BRDY or RDY
signal is not strobed Low. Therefore, the pro-
cessor-initiated access is not finished.

Step 4 Two clock cycles after AHOLD is asserted, the
EADS signal is activated to start an actual
snooping cycle, and INV is valid. If INV is 0, a
read access caused the snooping cycle. If INV
is 1, a write access caused the snooping cycle.
Additional EADS are ignored due to the hit of a
modified line. It is detected after HITM goes in-
active.

Step 5 Two clock cycles after EADS is asserted, the
snooping signal HITM becomes valid. The line
is modified; therefore, HITM is 0.

Step 6 In this cycle, the processor-initiated access is
finished.

Step 7 Two clock cycles after the end of the processor-
initiated access, the cache immediately starts
writing back the modified line. This is indicated
by ADS = 0 and W/R = 1. Note that AHOLD is
still active and the address bus is still an input.
However, the write-back access can be execut-
ed without any address. This is because the
corresponding address must have been on the
bus when EADS was strobed. Therefore, in the
case of the core system logic, the address for
the write-back must be latched with EADS to
be available later. This is required only if
AHOLD is not removed if HITM becomes 0.
Otherwise, the address of the write-back is put
onto the address bus by the microprocessor.

28 Amb5y86 Microprocessor

PRELIMINARY

AR TG >—

7 Q

HITM

Data

?

Note:

The circled numbers in this figure represent the steps in section 4.8.5.3.
Figure 12. Snoop Hit Cycle with Write-Back

Step 8 As an example, AHOLD is now removed. In the
next clock cycle, the current address of the
write-back access is driven onto the address
bus.

Step 9 The write-back access is finished when BLAST
and BRDY both transition to 0.

Step 101In the clock cycle after the final write-back
access, the snooping cache drives HITM back
to 1.

The status of the snooped and written-back line is now
either shared (INV =0) or is changed to invalid (INV = 1).

4.8.6 Reordering of Write-Backs (AHOLD) with
BOFF

As seen previously, the Bus Interface Unit (BIU) com-
pletes the processor-initiated access first if the snooping
access occurs after the start of the processor-initiated
access. If the HITM signal occurs one clock cycle before
the ADS = 0 of the processor-initiated access, the write-
back receives priority and is executed first.

However, if the snooping access is executed after the
start of the processor-initiated access, there is a
methodology to reorder the access order. The BOFF
signal delays outstanding processor-initiated cycles so
that a snoop write-back can occur immediately (see
Figure 13).

Scenario: If there are outstanding processor-initiated
cycles on the bus, asserting BOFF clears the bus pipe-
line. If a snoop causes HITM to be asserted, the first
cycle issued by the microprocessor after deassertion of
BOFF is the write-back cycle. After the write-back cycle,
it reissues the aborted cycles. This translates into the
following sequence:

Step 1 The processor starts a cacheable burst read
cycle.

Step 2 One clock cycle later, AHOLD is asserted. This
switchesthe address bus into aninput one clock
cycle after AHOLD is asserted.

Step 3 Two clock cycles after AHOLD is asserted, the
EADS and INV signals are asserted to start the
snhooping cycle.

Step 4 Two clock cycles after EADS is asserted, HITM
becomes valid. The line is modified, therefore
HITM = 0.

Step 5 Note that the processor-initiated access is not
completed because BLAST = 1.

Step 6 With HITM going Low, the core system logic
asserts BOFF in the next clock cycle to the
shooping processor to reorder the access.
BOFF overrides BRDY. Therefore, the partial
read is not used. It is reread later.

Amb5y86 Microprocessor 29

PRELIMINARY
CLK
| I | | | | | I ! | ! | |
ADR :)(Rl fr:om CPU X Wl: to CPU: X | don't care |)—|—(W1 from CPU X W2 X w3 X w4, XR2 from CPU
MG 77 | | | | | N ! i | !
CACHE NONADNNMNANNMYIANNNNNANINNNNNNNN\D I | | 77I7TTT I TTT77IT 77777
WIR N\ : | | : | L—+] | : | | :
i | | : : | i | | | | i I
BLAST /] | | | | | 7 I | I
ST T (O N N e
BRDY \\\\\\;\\\\\\1\\\\\\T\\\\\\;\\\\\\\\\\\\ AR, mml AR A AR AN
BOFF | E'| | | ! n_Hi/ | I ! I |
| |
AHOLD L/ | | | ; A\ : : ! : :
| | | |
INV | | ; X | X1 | | ; i | [| I
| | . | | | . |
EADS ' | . - - . |
: | : \Ji/ o : : I T
| | E\ | | | | [|
HITM | | | | N\ . | I . . /@
f T T T f T
Data ! ! ! ! (R ! ! wi X w2 X w3 I wa H>—
[| [T T | T
Note:

The circled numbers in this figure represent the steps in section 4.8.6.
Figure 13. Cycle Reordering with BOFF (Write-Back)

Step 7 One clock cycle later BOFF is deasserted. The
write-back access starts one clock cycle later
because the BOFF has cleared the bus pipe-
line.

Step 8 AHOLD is deasserted. In the next clock cycle
the address for the write-back is driven on the
address bus.

Step 9 One cycle after BOFF is deasserted, the cache
immediately starts writing back the modified
line. This is indicated by ADS = 0 and W/R = 1.

Step 10 The write-back access is finished when BLAST
and BRDY go active 0.

Step 11 The BIU restarts the aborted cache line fill with
the previous read. This is indicated by ADS =0
and W/R = 0.

Step 12In the same clock cycle, the snooping cache
drives HITM back to 1.

Step 13 The previous read is now reread.

4.8.7 Special Scenarios for AHOLD Snooping

In addition to the previously described scenarios, there
are special scenarios regarding the time of the EADS
and AHOLD assertion. The final result depends on the
time EADS and AHOLD are asserted relative to other
processor-initiated operations.

4.8.7.1

Scenario: The MESI cache protocol and the ability to
perform and respond to snoop cycles guarantee that
writes to the cache are logically equivalent to writes to
memory. In particular, the order of read and write oper-
ations on cached data is the same as if the operations
were on data in memory. Even non-cached memory
read and write requests usually occur on the external
bus in the same order that they were issued in the pro-
gram. For example, when a write miss is followed by a
read miss, the write data goes on the bus before the
read request is put on the bus. However, the posting of
writes in write buffers coupled with snooping cycles may
cause the order of writes seen on the external bus to
differ from the order they appear in the program. Con-
sider the following example, which is illustrated in Figure
14. For simplicity, snooping signals that behave in their
usual manner are not shown.

Write Cycle Reordering due to Buffering

Step 1 AHOLD is asserted. No further processor-initi-
ated accesses to the external bus can be start-
ed. No other access is in progress.

Step 2 The processor writes data A to the cache, re-
sulting in a write miss. Therefore, the data is put
into the write buffers, assuming they are not full.
No external access can be started because
AHOLD is still 1.

30 Amb5y86 Microprocessor

AMD l"l

PRELIMINARY

cLK | |® ! | | I I | | | | I
write Buffer | ¢ [_A_| [| | | | | | | |]

1 | ! ! ! ! ! ! 1 1 !
Cached Data B origir|1al I? modifield ; ; ; d'D ; ; ; ;
AHOLD / @ | | | | I\ | | | |
EADS _:_f\ T

I [[| | [[I T |

S I e
ADS T N& T Y

| | |) ! ! ! |
BLAST ////;//// ;////i////;////////// : ; ;\ !/ /\;\\ @P

| | | | | o | | L
5Y STTTATITITITITTRTITINONNNRR) A AV AGAT A
Data f } } | | B IX B+4 X B+8 XB+12 A
Note:

The circled numbers in this figure represent the steps in section 4.8.7.1.

Figure 14. Write Cycle Reordering Due to Buffering

Step 3 The next write of the processor hits the cache
and the line is non-shared. Therefore, data B is
written into the cache. The cache line transits
to the modified state.

Step 4 Inthe same clock cycle, a snoop request to the
same address where data B resides is started
because EADS = 0. The snoop hits a modified
line. EADS isignored due to the hit of a modified
line, butis detected again as early as in step 10.

Step 5 Two clock cycles after EADS asserts, HITM be-
comes valid.

Step 6 Because the processor-initiated access cannot
be finished (AHOLD is still 1), the BIU gives
priority to a write-back access that does not re-
quire the use of the address bus. Therefore, in
the clock cycle, the cache starts the write-back
sequence indicated by ADS = 0 and W/R = 0.

Step 7 During the write-back sequence, AHOLD is
deasserted.

Step 8 The write-back access is finished when BLAST
and BRDY transition to 0.

Step 9 After the last write-back access, the BIU starts
writing data A from the write buffers. This is
indicated by ADS = 0 and W/R = 0.

Step 10In the same clock cycle, the snooping cache
drives HITM back to 1.

Step 11 The write of data A is finished if BRDY transi-
tions to 0 (BLAST = 0), because it is a single
word.

The software write sequence was first data A and then
data B. But on the external bus the data appear first as
data B and then data A. The order of writes is changed.
In most cases, it is unnecessary to strictly maintain the
ordering of writes. However, some cases (for example,
writing to hardware control registers) require writes to
be observed externally in the same order as pro-
grammed. There are two options to ensure serialization
of writes, both of which drive the cache to Write-through
mode:

1. Setthe PWT bit in the page table entries.

2. Drive the WB/WT signal Low when accessing these
memory locations.

Option 1 is an operating-system-level solution not di-
rectly implemented by user-level code. Option 2, the
hardware solution, is implemented at the system level.

Amb5y86 Microprocessor 31

a AMD

PRELIMINARY

4.8.7.2 BOFF Write-Back Arbitration
Implementation

The use of BOFF to perform snooping of the on-chip
cache is used in systems where more than one cache-
able bus master resides on the microprocessor bus. The
BOFF signal forces the microprocessor to relinquish the
bus in the following clock cycle, regardless of the type
of bus cycle it was performing at the time. Consequently,
the use of BOFF as a bus arbitrator should be imple-
mented with care to avoid system problems.

4.8.8 BOFF Design Considerations

The use of BOFF as a bus arbitration control mechanism
is immediate. BOFF forces the microprocessor to abort
an access in the following clock cycle after itis asserted.
The following design issues must be considered.

4.8.8.1 Cache Line Fills

The microprocessor aborts a cache line fill during a burst
read if BOFF is asserted during the access. Upon re-
gaining the bus, the read access commences where it
left off when BOFF was recognized. External buffers
should take this cycle continuation into consideration if
BOFF is allowed to abort burst read cycles.

4.8.8.2 Cache Line Copy-Backs

Similar to the burst read, the burst write also can be
aborted at any time with the BOFF signal. Upon regain-
ing access to the bus, the write continues from where it
was aborted. External buffers and control logic should
take into consideration the necessary control, if any, for
burst write continuations.

4.8.8.3 Locked Accesses

Locked bus cycles occur in various forms. Locked ac-
cesses occur during read-modify-write operations, in-
terrupt acknowledges, and page table updates.
Although asserting BOFF during a locked cycle is per-
mitted, extreme care should be taken to ensure data
coherency for semaphore updates and proper data or-
dering.

4.8.9 BOFF During Write-Back

If BOFF is asserted during a write-back, the processor
performing the write-back goes off the bus in the next
clock cycle. If BOFF is released, the processor restarts
that write-back access from the point at which it was
aborted. The behavior is identical to the normal BOFF
case that includes the abort and restart behavior.

4.8.10 Snooping Characteristics During a Cache
Line Fill

The microprocessor takes responsibility for responding
to snoop cycles for a cache line only during the time that
the line is actually in the cache or in a copy-back buffer.
There aretimes during the cache line fill cycle and during
the cache replacement cycle when the line is “in transit”
and snooping responsibility must be taken by other sys-
tem components.

The following cases apply if snooping is invoked via
AHOLD, and neither HOLD nor BOFF is asserted.

m System designers should consider the possibility
that a snooping cycle may arrive at the same time
as a cache line fill or replacement for the same ad-
dress. If a snooping cycle arrives at the same time
as a cache line fill with the same address, the CPU
uses the cache line fill, but does not place it in the
cache.

m If a snooping cycle occurs at the same time as a
cache line fill with a different address, the cache line
fill is placed into the cache unless EADS is recog-
nized before the first BRDY but after ADS is assert-
ed, or EADS is recognized on the last BRDY of the
cache line fill. In these cases, the line is not placed
into the cache.

4.8.11 Snooping Characteristics During a
Copy-Back

If a copy-back is occurring because of a cache line re-
placement, the address being replaced can be matched
by a snoop until assertion of the last BRDY of the copy-
back. This is when the modified line resides in the copy-
back buffer. An EADS as late as two clocks before the
last BRDY can cause HITM to be asserted.

Figure 15 illustrates the microprocessor relinquishing
responsibility of recognizing snoops for a line that is
copied back. It shows the latest EADS assertion that
can cause HITM assertion. HITM remains active for only
one clock period in that example. HITM remains active
through the last BRDY of the corresponding write-back;
in that case, the write-back has already completed. This
is the latest point where snooping can start, because
two clock cycles later, the final BRDY of the write-back
is applied.

If a snoop cycle hits the copy-back address after the first
BRDY of the copy-back and ADS has been issued, the
microprocessor asserts HITM. Keep in mind that the
write-back was initiated due to a read miss and not due
to a snoop to a modified line. In the second case, no
snhooping is recognized if a modified line is detected.

32 Amb5y86 Microprocessor

PRELIMINARY

ST I e T e T e e e e o B B B e B
MR SN > AddessE

| I I I ‘ I l I I | | | |
AOLD I_/ | | | : | | | |\ | | | |
EADS | | I | o\] | | |
CACHE I'\ I I I YA | ! | | ! | !

| I I I ! | | | | | | | |
HITM \

| | | | I | | | | | | | |
ADS ™ |/ | | I I | I | [I I I

| | | | | |
B0V JZZTTITITITITIIIIN [T (TN (TN T[T T T TTTTITT
BLAST f////]/ ! ! ! ! I\ I/ | I ! I !

Figure 15. Latest Snooping of Copy-Back

4.9 Cache Invalidation and Flushing in
Write-Back Mode

The Am5y86 microprocessor family supports cache in-
validation and flushing, much like the Am486 micropro-
cessor Write-through mode. However, the addition of
the write-back cache adds some complexity.

4.9.1 Cache Invalidation through Software

To invalidate the on-chip cache, the Am5y86 micropro-
cessor family uses the same instructions as the Am486
microprocessor family. The two invalidation instruc-
tions, INVD and WBINVD, while similar, are slightly dif-
ferent for use in the write-back environment.

The WBINVD instruction first performs a write-back of
the modified datain the cache to external memory. Then
it invalidates the cache, followed by two special bus
cycles. The INVD instruction only invalidates the cache,
regardless of whether modified data exists, and follows
with a special bus cycle. The utmost care should be
taken when executing the INVD instruction to ensure
memory coherency. Otherwise, modified data may be
invalidated prior to writing back to main memory. In
Write-back mode, WBINVD requires a minimum of 4100
internal clocks to search the cache for modified data.
Writing back modified data adds to this minimum time.
WBINVD can only be stopped by a RESET.

Two special bus cycles follow the write-back of modified
data upon execution of the WBINVD instruction: first the
write-back, and then the flush special bus cycle. The
INVD operates identically to the standard 486 micropro-
cessor family in that the flush special bus cycle is gen-

erated when the on-chip cache is invalidated. Table 7
specifies the special bus cycle states for the instructions
WBINVD and INVD.

Table 7. WBINVD/INVD Special Bus Cycles

A32-A2 M/IO |D/C |W/R |BE3 |BE2 | BE1 | BEO |Bus Cycle
00000000h| O 0 1 0 1 1 1 |write-back®
00000000h| 0 [0 [2 [21| 2] 0] 1 [musnt2
Notes:

1. WBINVD generates first write-back, then flush.
2. INVD generates only flush.

4.9.2 Cache Invalidation through Hardware

The other mechanism for cache invalidation is the
FLUSH pin. The FLUSH pin operates similarly to the
WBINVD command, writing back modified cache lines
to main memory. After the entire cache has copied back
all the modified data, the microprocessor generates two
special bus cycles. These special bus cycles signal to
the external caches that the microprocessor on-chip
cache has completed its copy-back and that the second
level cache may begin its copy-back to memory, if so
required.

Two flush acknowledge cycles are generated after the
FLUSH pin is asserted and the modified data in the
cache is written back. As with the WBINVD instruction,
in Write-back mode, a flush requires a minimum of 4100
internal clocks to test the cache for modified data. Writ-
ing back modified data adds to this minimum time. The
flush operation can only be stopped by a RESET. Table
8 shows the special flush bus cycle configuration.

Amb5y86 Microprocessor 33

a AMD

PRELIMINARY

Table 8. FLUSH Special Bus Cycles

A32-A2 M/10 | D/C |W/R |BE3 |BE2 |BEL |BEO |Bus Cycle

0000000th| O | O | 1 | 0| 1 | 1 | 1 |FirstFlush
Acknowledge
Second

0000 0001h| O 0 1 1 1 0 1 |Flush
Acknowledge

4.9.3 Snooping During Cache Flushing

As with snooping during normal operation, snooping is
permitted during a cache flush, whether initiated by the
FLUSH pin or WBINVD instruction. After completion of
the snoop, and write-back, if needed, the microproces-
sor completes the copy-back of modified cache lines.

4.10 Burst Write

The Am5y86 microprocessor improves system perfor-
mance by implementing a burst write feature for cache

line write-backs and copy-backs. Standard write oper-
ations are still supported. Burst writes are always four
32-bit words and start at the beginning of a cache line
address of 0 for the starting access. The timing of the
BLAST and BRDY signals is identical to the burst read.
Figure 16 shows a burst write access. (See Figure 17
and Figure 18 for burst read and burst write access with
BOFF asserted.) In addition to using BLAST, the
CACHE signal indicates burstable cycles.

CACHE is a cycle definition pin used when in Write-back
mode (CACHE floats in Write-through mode). For pro-
cessor-initiated cycles, the signal indicates:

m Foraread cycle, the internal cacheability of the cycle

= For a write cycle, a burst write-back or copy-back, if
KEN is asserted (for linefills).

SUAST [////1/11071)

AN

SESZA) LT ,

ADR ! X | XX0 X x4 X xxs: X xxc;: X
wio //// : : i ; RN
WR M | | | | RN\
CACHE | |/ ' ' I
-
| | | /
| |
' i

[
Data ! ! (xxo IX xxa IX xx8 I X xxc| X
Figlure 16. BurstIWrite I
ck [L1 L[1 I I I | II I II | I I I I I LT 1
ADR b(: XX0 : X XXE) ; ; — [XX4 | X XX8] xxxc; X
wo g ——————w
| I |
WR T\ : : — ! | — | | |
CACFE M_, /[T ™— I — | I |
— L I | | I | I '
ADS ‘__/ : | | | I —— I ;\XX
e e
| I |
| 1 |
BRDY '\\\\\\\\\\ AN : /\\\\;\\\\\\;\\\\\\\\\\\\\\\\ :AW\ ! AN | AN
BOFF | | | _| | !/ | | | | i
Data I—|—(XX0" X Xxat X | I don't care T X XXE] X XX8| X XXC| X
to CPU ! ' ' ! ' ! | ,

Figure 17. Burst Read with BOFF Assertion

34

Amb5y86 Microprocessor

PRELIMINARY
ck mp I -7 T °—J 7 7 °JI °J °JI ’—TI °1—I1
| | | | | | |
ADR T X ;xxo | X xx{) ; i — | XX4 ; XxXx8 X XxC X
Mo J77 | i M | | | s I I i i\}}
] | | | | | | | | | |
WR 77 | | \ I | — I | I |\
CACHE T\ I/ | \ I | - I | I I
I | | I | |
ADS 4\ | / M
| | | | | | N+ | NN
BLAST Kggggg#/ | \ | — | '
| | | | | | |
| | Il L 1
//////I////A:////\i/////I//////I//////I/////i/////\:
|
| I |
I
|

BRDY | [N\ [TTN\ /777
| |

BOFF I | \ | I | | | |

Data q—————+4 XX0 X xx4i) | | —xxd_ X xx8 X_xXC_X

from CPU I | | [! | ,

Figure 18. Burst Write with BOFF Assertion

CACHE is asserted for cacheable reads, cacheable
code fetches, and write-backs/copy-backs. CACHE is
deasserted for non-cacheable reads, translation looka-
side buffer (TLB) replacements, locked cycles (except
for write-back cycles generated by an external snoop
operation that interrupts a locked read/modify/write se-
guence), I/O cycles, special cycles, and write-throughs.
CACHE is driven to its valid level in the same clock as
the assertion of ADS and remains valid until the next
RDY or BRDY assertion. The CACHE output pin floats
one clock after BOFF is asserted. Additionally, the signal
floats when HLDA is asserted.

The following steps describe the burst write sequence:

1. The access is started by asserting: ADS = 0, M/IO
=1,W/R=1, CACHE =0. The address offset always
is 0, so the burst write always starts on a cache line
boundary. CACHE transitions High (inactive) after
the first BRDY.

2. In the second clock cycle, BLAST is 1 to indicate
that the burst is not finished.

3. The burst write access is finished when BLAST is
0 and BRDY is 0.

When the RDY signal is returned instead of the BRDY
signal, the Am5y486 microprocessor halts the burst cycle
and proceeds with the standard non-burst cycle.

4.10.1 Locked Accesses

Locked accesses of an Am5y86 microprocessor occur
for read-modify-write operations and interrupt acknowl-
edge cycles. The timing is identical to the DX micropro-
cessor, although the state transitions differ from the
standard DX microprocessor. Unlike processor-initiated
accesses, state transitions for locked accesses are seen
by all processors in the system. Any locked read or write

generates an external bus cycle, regardless of cache
hit or miss. During locked cycles, the processor does
not recognize a HOLD request, but it does recognize
BOFF and AHOLD requests.

Locked read operations always read data from the ex-
ternal memory, regardless of whether the data is in the
cache. In the event that the data is in the cache and
unmodified, the cache line is invalidated and an external
read operation is performed. The data from the external
memory is used instead of the data in the cache, thus
ensuring that the locked read is seen by all other bus
masters. If alocked read occurs, the datais in the cache,
and it is modified. The microprocessor first copies back
the data to external memory, invalidates the cache line,
and then performs a read operation to the same location,
thus ensuring that the locked read is seen by all other
bus masters. At no time is the data in the cache used
directly by the microprocessor or a locked read opera-
tion before reading the data from external memory.
Since locked cycles always begin with a locked read
access, and locked read cycles always invalidate a
cache line, a locked write cycle to a valid cache line,
either modified or unmodified, does not occur.

4.10.2 Serialization
Locked accesses are totally serialized:

= All reads and writes in the write buffer that precede
the locked access are issued on the bus before the
first locked access is executed.

» Noread orwrite after the last locked access is issued
internally or on the bus until the final RDY or BRDY
for all locked accesses.

m Itis possible to get a locked read, write-back, locked
write cycle.

Amb5y86 Microprocessor 35

a AMD

PRELIMINARY

4.10.3 PLOCK Operation in Write-Through Mode

As described in Section 3, PLOCK is only used in Write-
through mode; the signal is driven inactive in Write-back
mode. In Write-through mode, the processor drives
PLOCK Low to indicate that the current bus transaction
requires more than one bus cycle. The CPU continues
to drive the signal Low until the transaction is completed,
whether or not RDY or BRDY is returned. Refer to the
pin description for additional information.

5 CLOCK CONTROL
5.1 Clock Generation

The Am5y486 CPU is driven by a 1x clock that relies on
phased-lock loop (PLL) to generate the two internal
clock phases: phase one and phase two. Therising edge
of CLK corresponds to the start of phase one (ph1). All
external timing parameters are specified relative to the
rising edge of CLK.

5.2 Stop Clock

The Am5486 CPU also provides an interrupt mecha-
nism, STPCLK, that allows system hardware to control
the power consumption of the CPU by stopping the in-
ternal clock to the CPU core in a sequenced manner.
The first low-power state is called the Stop Grant state.
If the CLK input is completely stopped, the CPU enters
into the Stop Clock state (the lowest power state). When
the CPU recognizes a STPCLK interrupt, the processor:

m Stops execution on the next instruction boundary
(unless superseded by a higher priority interrupt)

m Waits for completion of cache flush

m Stops the pre-fetch unit

m Empties all internal pipelines and write buffers
m Generates a Stop Grant bus cycle

m Stops the internal clock

At this point the CPU is in the Stop Grant state.

The CPU cannot respond to a STPCLK request from an
HLDA state because it cannot empty the write buffers
and, therefore, cannot generate a Stop Grant cycle. The
rising edge of STPCLK signals the CPU to return to
program execution at the instruction following the inter-
rupted instruction. Unlike the normal interrupts (INTR
and NMI), STPCLK does not initiate interrupt acknowl-
edge cycles or interrupt table reads.

5.2.1 External Interrupts in Order of Priority

In Write-through mode, the priority order of external in-
terrupts is:

RESET/SRESET
FLUSH

SMI

NMI

INTR

STPCLK

Ok wnNpE

In Write-back mode, the priority order of external inter-
rupts is:

RESET
FLUSH
SRESET
SMI

NMI
INTR
STPCLK

Noogoh,whpE

STPCLK is active Low and has an internal pull-up re-
sistor. STPCLK is asynchronous, but setup and hold
times must be met to ensure recognition in any specific
clock. STPCLK must remain active until the Stop Grant
special bus cycle is asserted and the system responds
with either RDY or BRDY. When the CPU enters the
Stop Grant state, the internal pull-up resistor is disabled,
reducing the CPU power consumption. The STPCLK
input must be driven High (not floated) to exit the Stop
Grant state. STPCLK must be deasserted foraminimum
of five clocks after RDY or BRDY is returned active for
the Stop Grant bus cycle before being asserted again.
There are two regions for the Low-power mode supply
current:

1. Low Power: Stop Grant state (fast wake-up, frequency-
and voltage-dependent)

2. Lowest Power: Stop Clock state (slow wake-up, volt-
age-dependent)

5.3 Stop Grant Bus Cycle

The processor drives a special Stop Grant bus cycle to
the bus after recognizing the STPCLK interrupt. This
bus cycle is the same as the HALT cycle used by a
standard Am486 microprocessor, with the exception
that the Stop Grant bus cycle drives the value 0000
0010h on the address pins.

m MIO=0

m DIC=0

= WR=1

m Address Bus = 0000 0010h (A, =1)
= BE3-BEO = 1011

m Data bus = undefined

The system hardware must acknowledge this cycle by
returning RDY or BRDY, or the processor will not enter
the Stop Grant state (see Figure 19). The latency be-
tween a STPCLK request and the Stop Grant bus cycle
depends on the current instruction, the amount of data
in the CPU write buffers, and the system memory per-
formance.

36 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

/NS S S S\ L
| |

| | | |
| | | |

STPCLK | : : : :
| | | | |

| byt | | | |

ADDR | | | | x | Stop Gtant Bus cycle ’
| | | | | | |

| | | | | | |

ROV | | | | N
| | | | | |

Figure 19. Entering Stop Grant State

5.4 Pin State During Stop Grant

Table 9 shows the pin states during Stop Grant Bus
states. During the Stop Grant state, most output and
input/output signals of the microprocessor maintain the
level they held when entering the Stop Grant state. The
data and data parity signals are tri-stated. In response
to HOLD being driven active during the Stop Grant state
(when the CLK input is running), the CPU generates
HLDA and tri-states all output and input/output signals
that are tri-stated during the HOLD/HLDA state. After
HOLD is deasserted, all signals return to the same state
they were before the HOLD/HLDA sequence.

Table 9. Pin State During Stop Grant Bus State

Signal Type State
A3-A2 (@) Previous State
A31-A4 I/0 Previous State
D31-D0 I/0 Floated
BE3-BEOD 0 Previous State
DP3-DPO I/0 Floated
W/R, D/C, M/IO, CACHE o] Previous State
ADS @] Inactive
LOCK, PLOCK 0 Inactive
BREQ (@) Previous State
HLDA @) As per HOLD
BLAST (@) Previous State
FERR @] Previous State
PCHK 0] Previous State
SMIACT 0] Previous State
HIT™M 0 Previous State

To achieve the lowest possible power consumption dur-
ing the Stop Grant state, the system designer must en-
sure that the input signals with pull-up resistors are not
driven Low, and the input signals with pull-down resis-
tors are not driven High.

All inputs except data bus pins must be driven to the
power supply rails to ensure the lowest possible current
consumption during Stop Grant or Stop Clock modes.
For compatibility, data pins must be driven Low to
achieve the lowest possible power consumption.

5.5 Clock Control State Diagram

Figure 20 shows the state transitions during a Stop
Clock cycle.

5.5.1 Normal State

This is the normal operating state of the CPU. While in
the normal state, the CLK input can be dynamically
changed within the specified CLK period stability limits.

5.5.2 Stop Grant State

The Stop Grant state provides a low-power state that
can be entered by simply asserting the external STPCLK
interrupt pin. When the Stop Grant bus cycle has been
placed on the bus, and either RDY or BRDY is returned,
the CPU is in this state. The CPU returns to the normal
execution state 10-20 clock cycles after STPCLK has
been deasserted.

While in the Stop Grant state, the pull-up resistors on
STPCLK and UP are disabled internally. The system
must continue to drive these inputs to the state they
were in immediately before the CPU entered the Stop
Grant State. For minimum CPU power consumption, all
other input pins should be driven to their inactive level
while the CPU is in the Stop Grant state.

Amb5y86 Microprocessor 37

a AMD

PRELIMINARY

@ Cache Flush State

(valid for Write-back mode only)

Flush Acknowledge cycle generated

CLK Running

FLUSH asserted

FLUSH
asserted

d
«

Flush Acknowledge
Cycle and Halt bus
cycle generatec.

HLT instruction executed and

A 4

_ Halt bus cycle generated v

l

Auto HALT Power Down State

INTR, NMI, SMi, RESET, SRESET

(D Normal State

CLK Running CLK Running
A A} — [4
STPCLK
—_— asserted -
EADS STPCLK deasserted and Halt bus cycle and Stop STPCLK
Grant bus| | deasserted or
STPCLK asserted and Stop Grant bus cycle cycle RESET, SRESET
\ 4

EADS

A

Stop Clock Snoop State
One Clock Power-up

Stop Grant State
»| CLK Running

with write-back cycle if
necessary
CLK Running

A

Start CLK and
PLL latency

Stop CLK
A

Stop Clock State
CLK Changed

Figure 20. Stop Clock State Machine

YW NP NN NN

N
/

N>/

CLK
| gTPC|L|(<;| \| |
ample
e S e
l C el
NN“/l////l////l/// |
I

SMI \|\\\\\|\\\\\|\\\

Note: A = Earliest time at which NMI or SMI is recognized.

Figure 21. Recognition of Inputs when Exiting Stop Grant State

A RESET or SRESET brings the CPU from the Stop
Grant state to the Normal state. The CPU recognizes
the inputs required for cache invalidations (HOLD,
AHOLD, BOFF, and EADS) as explained later. The CPU
does not recognize any other inputs while in the Stop
Grant state. Input signals to the CPU are not recognized
until 1 clock after STPCLK is deasserted (see Figure 21).

While in the Stop Grant state, the CPU does not recog-
nize transitions on the interrupt signals (SMI, NMI, and
INTR). Driving an active edge on either SMI or NMI does
not guarantee recognition and service of the interrupt
request following exit from the Stop Grant state. How-
ever, if one of the interrupt signals (SMI, NMI, or INTR)
is driven active while the CPU is in the Stop Grant state,
and held active for at least one CLK after STPCLK is
deasserted, the corresponding interrupt will be serviced.

38

Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

The Am5486 CPU product family requires INTR to be
held active until the CPU issues an interrupt acknowl-
edge cycle to guarantee recognition. This condition also
applies to the existing Am486 CPUs.

In the Stop Grant state, the system can stop or change
the CLK input. When the clock stops, the CPU enters
the Stop Clock state. The CPU returns to the Stop Grant
state immediately when the CLK inputis restarted. You
must hold the STPCLK input Low until a stabilized fre-
guency has been maintained for at least 1 ms to ensure
that the PLL has had sufficient time to stabilize.

The CPU generates a Stop Grant bus cycle when en-
tering the state from the Normal or the Auto HALT Power
Down state. When the CPU enters the Stop Grant state
from the Stop Clock state or the Stop Clock Snoop state,
the CPU does not generate a Stop Grant bus cycle.

5.5.3 Stop Clock State

Stop Clock state is entered from the Stop Grant state
by stopping the CLK input (either logic High or logic
Low). None of the CPU input signals should change
state while the CLK input is stopped. Any transition on
an input signal (except INTR) before the CPU has re-
turned to the Stop Grant state may result in unpredict-
able behavior. If INTR goes active while the CLK input
is stopped, and stays active until the CPU issues an
interrupt acknowledge bus cycle, it is serviced in the
normal manner. System design must ensure the CPU
isinthe correct state prior to asserting cache invalidation
or interrupt signals to the CPU.

5.5.4 Auto Halt Power Down State

A HALT instruction causes the CPU to enter the Auto
HALT Power Down state. The CPU issues a normal
HALT bus cycle, and only transitions to the Normal state
when INTR, NMI, SMI, RESET, or SRESET occurs.

The system can generate a STPCLK while the CPU is
in the Auto HALT Power Down state. The CPU gener-
ates a Stop Grant bus cycle when it enters the Stop
Grant state from the HALT state. When the system deas-
serts the STPCLK interrupt, the CPU returns execution
tothe HALT state. The CPU generates a new HALT bus
cycle when it reenters the HALT state from the Stop
Grant state.

5.5.5 Stop Clock Snoop State
(Cache Invalidations)

When the CPU is in the Stop Grant state or the Auto
HALT Power Down state, the CPU recognizes HOLD,
AHOLD, BOFF, and EADS for cache invalidation. When
the system asserts HOLD, AHOLD, or BOFF, the CPU
floats the bus accordingly. When the system asserts
EADS, the CPU transparently enters Stop Clock Snoop
state and powers up for one full clock to perform the
required cache snoop cycle. If a modified line is
snooped, a cache write-back occurs with HITM transi-

tioning active until the completion of the write-back. It
then powers down and returns to the previous state. The
CPU does not generate a bus cycle when it returns to
the previous state.

5.5.6 Cache Flush State

When configured in Write-back mode, the processor
recognizes FLUSH for copying back modified cache
lines to memory in the Auto Halt Power Down State or
Normal State. Upon the completion of the cache flush,
the processor returns to its prior state, and regenerates
a special bus cycle, if necessary.

6 SRESET FUNCTION

The Am5486 microprocessor family supports a soft re-
set function through the SRESET pin. SRESET forces
the processor to begin execution in a known state. The
processor state after SRESET is the same as after RE-
SET exceptthatthe internal caches, CD and NW in CRO,
write buffers, SMBASE registers, and floating-point reg-
isters retain the values they had prior to SRESET, and
cache snooping is allowed. The processor starts exe-
cution at physical address FFFFFFFOh. SRESET can
be used to help performance for DOS extenders written
for the 80286 processor. SRESET provides a method
to switch from Protected to Real mode while maintaining
the internal caches, CRO, and the FPU state. SRESET
may not be used in place of RESET after power-up.

In Write-back mode, once SRESET is sampled active,
the SRESET sequence begins on the next instruction
boundary (unless FLUSH or RESET occur before that
boundary). When started, the SRESET sequence con-
tinues to completion and then normal processor execu-
tion resumes, independent of the deassertion of
SRESET. Ifasnoop hits amodified line during SRESET,
a normal write-back cycle occurs. ADS is asserted to
drive the bus cycles even if SRESET is not deasserted.

7 SYSTEM MANAGEMENT MODE
7.1 Overview

The Am5y86 microprocessor supports four modes: Re-
al, Virtual, Protected, and System Management mode
(SMM). As an operating mode, SMM has a distinct pro-
cessor environment, interface, and hardware/software
features. SMM lets the system designer add new soft-
ware-controlled features to the computer products that
always operate transparent to the operating system
(OS) and software applications. SMM is intended for
use only by system firmware, not by applications soft-
ware or general purpose systems software.

The SMM architectural extension consists of the follow-
ing elements:

m System Management Interrupt (SMI) hardware in-
terface

Amb5y86 Microprocessor 39

a AMD

Dedicated and secure memory space (SMRAM) for
SMI handler code and CPU state (context) data with
a status signal for the system to decode access to
that memory space, SMIACT

m Resume (RSM) instruction, for exiting SMM

m Special features, such as I/0 Restart and I/O instruc-
tion information, for transparent power management
of /0 peripherals, and Auto HALT Restart

7.2 Terminology

The following terms are used throughout the discussion
of System Management mode.

= SMM: System Management mode. The operating
environment that the processor (system) enters
when servicing a System Management Interrupt.

m SMI: System Management Interrupt. This is the trig-
ger mechanism for the SMM interface. When SMl is
asserted (SMI pin asserted Low) it causes the pro-
cessor to invoke SMM. The SMI pin is the only
means of entering SMM.

m SMI handler: System Management mode handler.
This is the code that is executed when the processor
isin SMM. Example applications that this code might
implement are a power management control or a
system control function.

m RSM: Resume instruction. This instruction is used
by the SMI handler to exit the SMM and return to the
interrupted OS or application process.

m SMRAM: This is the physical memory dedicated to
SMM. The SMI handler code and related data reside
in this memory. The processor also uses this mem-
ory to store its context before executing the SMI han-
dler. The operating system and applications should
not have access to this memory space.

m SMBASE: This is a control register that contains the
base address that defines the SMRAM space.

m Context: Thisterm refersto the processor state. The
SMM discussion refers to the context, or processor
state, just before the processor invokes SMM. The

context normally consists of the CPU registers that
fully represent the processor state.

m Context Switch: A context switch is the process of
either saving or restoring the context. The SMM dis-
cussion refers to the context switch as the process
of saving/restoring the context while invoking/exiting
SMM, respectively.

m SMSAVE: A mechanism that saves and restores all
internal registers to and from SMRAM.

7.3 System Management Interrupt
Processing

The system interrupts the normal program execution
and invokes SMM by generating a System Management
Interrupt (SMI) to the CPU. The CPU services the SMI
by executing the following sequence (see Figure 22).

1. The CPU assertsthe SMIACT signal, instructing the
system to enable the SMRAM.

The CPU saves its state (internal register) to SM-
RAM. It starts at the SMBASE relative address lo-
cation (see Section 7.3.3), and proceeds downward
in a stack-like fashion.

The CPU switches to the SMM processor environ-
ment (an external pseudo-real mode).

The CPU then jumps to the absolute address of
SMBASE + 8000h in SMRAM to execute the SMI
handler. This SMI handler performs the system
management activities.

Note: Ifthe SMRAM shares the same physical address
location with part of the system RAM, it is “overlaid”
SMRAM. To preserve cache consistency and correct
SMM operation in systems using overlaid SMRAM, the
cache must be flushed via the FLUSH pin when entering
SMM.

5. The SMI handler then executes the RSM instruction
which restores the CPU’s context from SMRAM,
deasserts the SMIACT signal, and then returns con-
trol to the previously interrupted program execution.

Instr | Instr

#4 #5

SMI

Handler State Restore

RSM

Instr Instr | Instr
#1 #2 #3
State Save
SMI | | '
SMIACT |

Figure 22. Basic SMI Interrupt Service

40

Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

CPU

SMIACT

SMI Interface
SMI

——————

Figure 23. Basic SMI Hardware Interface

For uses such as fast enabling of external I/O devices,
the SMSAVE mode permits the restarting of the 1/O in-
structions and the HALT instruction. This is accom-
plished through 1/O Trap Restart and Halt/Auto HALT
Restart slots. Only I/0 and HALT opcodes are restart-
able. Attempts to restart any other opcode may result
in unpredictable behavior.

The System Management Interrupt hardware interface
consists ofthe SMIrequestinputand the SMIACT output
used by the system to decode the SMRAM (see Figure
23).

7.3.1 System Management Interrupt Processing

SMl is a falling-edge-triggered, non-maskable interrupt
request signal. SMlis an asynchronous signal, but setup
and hold times must be met to guarantee recognition in
a specific clock. The SMIinput does not have to remain
active until the interrupt is actually serviced. The SMI
input needs to remain active for only a single clock if the
required setup and hold times are met. SMI also works
correctly if it is held active for an arbitrary number of
clocks (see Figure 24).

The SMI input must be held inactive for at least four
clocks after it is asserted to reset the edge-triggered
logic. A subsequent SMI may not be recognized if the
SMlinputis not held inactive for at least four clocks after
being asserted. SMI, like NMI, is not affected by the IF
bit in the EFLAGS register and is recognized on an in-
struction boundary. SMI does not break locked bus cy-
cles. SMI has a higher priority than NMI and is not
masked during an NMI. After SMlis recognized, the SMI
signal is masked internally until the RSM instruction is
executed and the interrupt service routine is complete.

Masking SMI prevents recursive calls. If another SMI
occurs while SMI is masked, the pending SMI is recog-
nized and executed on the next instruction boundary
after the current SMI completes. This instruction bound-
ary occurs before execution of the next instruction in the
interrupted application code, resulting in back-to-back
SMI handlers. Only one SMi signal can be pending while
SMI is masked. The SMI signal is synchronized inter-
nally and must be asserted at least three clock cycles
prior to asserting the RDY signal to guarantee recogni-
tion on a specific instruction boundary. This is important
for servicing an 1/O trap with an SMI handler.

7.3.2 SMI Active (SMIACT)

SMIACT indicates that the CPU is operating in SMM.
The CPU asserts SMIACT in response to an SMI inter-
rupt request on the SMI pin. SMIACT is driven active
after the CPU has completed all pending write cycles
(including emptying the write buffers), and before the
first access to SMRAM when the CPU saves (writes) its
state (or context) to SMRAM. SMIACT remains active
until the last access to SMRAM when the CPU restores
(reads) its state from SMRAM. The SMIACT signal does
not float in response to HOLD. The SMIACT signal is
used by the system logic to decode SMRAM. The num-
ber of clocks required to complete the SMM state save
and restore is dependent on system memory perfor-
mance. The values shown in Figure 25 assume 0 wait-
state memory writes (2 clock cycles), 2-1-1-1 burst
read cycles, and 0 wait-state non-burst reads (two clock
cycles). Additionally, it is assumed that the data read
during the SMM state restore sequence is not cache-
able. The minimum time required to enter a SMSAVE
SMI handler routine for the CPU (from the completion
of the interrupted instruction) is given by:

Latency to start of SMI handler = A + B + C = 161 clocks

and the minimum time required to return to the interrupt-
ed application (following the final SMM instruction be-
fore RSM) is given by:

Latency to continue application = E + F + G = 258 clocks

CLK2
| : SMI Sampleld !
| | | |
| — e > I | |
tsu thd
| | | | |
| | [| |
—_— I I 1 I
RDY

Figure 24. SMI Timing for Servicing an /O Trap

Amb5y86 Microprocessor 41

PRELIMINARY

T1 T2

A\ |

®

VinE

|
:
1
@ ! |
I |

Normal State

A: Last RDY from non-SMM transfer to SMIACT assertion
B: SMIACT assertion to first ADS for SMM state save

C: SMM state save (dependent on memory performance)
D: SMI handler

E: SMM state restore (dependent on memory performance)
F: Last RDY from SMM transfer to deassertion of SMIACT
G: SMIACT deassertion of first non-SMM ADS

Normal
State

State
Save

SMM
Handler

State
Restore

Clock-Tripled CPU
2 CLKs minimum
15 CLKs minimum

Clock-Quadrupled CPU
2 CLKs minimum
10 CLKs minimum

100 CLKs 70 CLKs
User-determined User-determined
180 CLKs 120 CLKs

2 CLKs minimum
20 CLKs minimum

2 CLKs minimum
20 CLKs minimum

Figure 25. SMIACT Timing

7.3.3 SMRAM

The CPU uses the SMRAM space for state save and
state restore operations during an SMI. The SMI han-
dler, which also resides in SMRAM, uses the SMRAM
space to store code, data, and stacks. In addition, the
SMI handler can use the SMRAM for system manage-
mentinformation such as the system configuration, con-
figuration of a powered-down device, and system
designer-specific information.

Note: Access to SMRAM is through the CPU internal
cache. To ensure cache consistency and correct oper-
ation, always assert the FLUSH pin in the same clock
as SMi for systems using overlaid SMRAM.

The CPU asserts SMIACT to indicate to the memory
controller that it is operating in System Management
mode. The system logic should ensure that only the
CPU and SMI handler have access to this area. Alter-
nate bus masters or DMA devices trying to access the
SMRAM space when SMIACT is active should be di-
rected to system RAM in the respective area. The sys-
tem logic is minimally required to decode the physical
memory address range 38000h—-3FFFFh as SMRAM
area. The CPU saves its state to the state save area

from 3FFFFh downward to 3FEQOh. After saving its
state, the CPU jumps to the address location 38000h to
begin executing the SMI handler. The system logic can
choose to decode a larger area of SMRAM as needed.
The size of this SMRAM can be between 32 Kbytes and
4 Gbhytes.The system logic should provide a manual
method for switching the SMRAM into system memory
space when the CPU is not in SMM. This enables ini-
tialization of the SMRAM space (i.e., loading SMI han-
dler) before executing the SMI handler during SMM (see
Figure 26).

System memory
accesses redirected SMRAM

to SMRAM
CPU
accesses to
Sc)j’stem System memory
adaress d accesses not g
space use redirected to SMRAM
for loading Normal
SMRAM
Memory
Space

Figure 26. Redirecting System Memory
Address to SMRAM

42

Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

7.3.4 SMRAM State Save Map

When SMilis recognized on an instruction boundary, the
CPU core first sets the SMIACT signal Low, indicating
to the system logic that accesses are now being made
to the system-defined SMRAM areas. The CPU then
writes its state to the state save area in the SMRAM.
The state save area starts at SMBASE + [8000h +
7FFFh]. The default CS Base is 30000h; therefore, the
default state save area is at 3FFFFh. In this case, the
CS Base is also referred to as the SMBASE.

Table 10. SMRAM State Save Map

Rgf%'ssettir Register Writable?
7FFCh CRO No
7FF8h CR3 No
7FF4h EFLAGS Yes
7FFOh EIP Yes
7FECh EDI Yes
7FE8h ESI Yes
7FE4h EBP Yes
7FEOh ESP Yes
7FDCh EBX Yes
7FD8h EDX Yes
7FD4h ECX Yes
7FDOh EAX Yes
7FCCh DR6 No
7FC8h DR7 No
7FC4h TR* No
7FCOh LDTR* No
7FBCh GS* No
7FB8h FS* No
7FB4h Ds* No
7FBOh SS* No
7FACh Cs* No
7FA8h ES* No

7FA7Th—7F98h | Reserved No
7F94h IDT Base No
7F93h-7F8Ch |Reserved No
7F88h GDT Base No
7F87h-7F08h |Reserved No
7F04h 1/0 Trap Word No
7F02h Halt Auto Restart Yes
7F00h 1/0 Trap Restart Yes
7EFCh SMM Revision Identifier Yes
7EF8h State Dump Base Yes
7EF7h-7EQOOh | Reserved No
Note:

*Upper 2 bytes are not modified.

If the SMBASE relocation feature is enabled, the SM-
RAM addresses can change. The following formula is
used to determine the relocated addresses where the
context is saved: SMBASE + [8000h + Register Offset],
where the default initial SMBASE is 30000h and the
Register Offset is listed in Table 10. Reserved spaces
are for new registers in future CPUs. Some registers in
the SMRAM state save area may be read and changed
by the SMI handler, with the changed values restored
to the processor register by the RSM instruction. Some
registerimages are read-only, and must not be modified.
(Modifying these registers results in unpredictable be-
havior.) The values stored in the “reserved” areas may
change in future CPUs. An SMI handler should not rely
on values stored in a reserved area.

The following registers are written out during SMSAVE
mode to the RESERVED memory locations (7FA7h—
7F98h, 7F93h—7F8Ch, and 7F87h-7F08h), but are not
visible to the system software programmer:

s DR3-DRO

m CR2

m CS, DS, ES, FS, GS, and SS hidden descriptor
registers

m EIP_Previous

m GDT Attributes and Limits

m |IDT Attributes and Limits

m LDT Attributes, Base, and Limits

m TSS Attributes, Base, and Limits

If an SMI request is issued to power down the CPU, the
values of all reserved locations in the SMM state save
area must be saved to non-volatile memory.

The following registers are not automatically saved and
restored by SMI and RSM:

m TR7-TR3
m FPU registers:
— STn
— FCS
— FSW
— Tag Word
— FP instruction pointer
— FP opcode
— Operand pointer

Note: You can save the FPU state by using an FSAVE
or FNSAVE instruction.

For all SMI requests except for power down suspend/
resume, these registers do not have to be saved be-
cause their contents will not change. During a power
down suspend/resume, however, aresume reset clears
these registers back to their default values. In this case,
the suspend SMI handler should read these registers
directly to save them and restore them during the power
up resume. Anytime the SMI handler changes these
registersinthe CPU, it must also save and restore them.

Amb5y86 Microprocessor 43

a AMD

PRELIMINARY

7.4 Entering System Management Mode

SMM is one of the major operating modes, along with
Protected mode, Real mode, and Virtual mode. Figure
27 shows how the processor can enter SMM from any
of the three modes and then return.

Real
mode
J
Reset
or PE=1
PE=0
N\ System
[Protected Management
Reset mode \
J
VM=0 VM=1

Y

Virtual
mode |

Figure 27. Transition to and from SMM

The external signal SMI causes the processor to switch
to SMM. The RSM instruction exits SMM. SMM is trans-
parent to applications, programs, and operating sys-
tems for the following reasons:

m The only way to enter SMM is via a type of non-
maskable interrupt triggered by an external signal

m The processor begins executing SMM code from a
separate address space, referred to earlier as sys-
tem management RAM (SMRAM)

= Upon entry into SMM, the processor saves the reg-
ister state of the interrupted program (depending on
the save mode) in a part of SMRAM called the SMM
context save space

= Allinterrupts normally handled by the operating sys-
tem or applications are disabled upon SMM entry

m A special instruction, RSM, restores processor reg-
isters from the SMM context save space and returns
control to the interrupted program

Similar to Real mode, SMM has no privilege levels or
address mapping. SMM programs can execute all 1/0
and other system instructions and can address up to 4
Gbytes of memory.

7.5 Exiting System Management Mode

The RSM instruction (opcode OF AAh) leaves SMM and
returns control to the interrupted program. The RSM
instruction can be executed only in SMM. An attempt to
execute the RSM instruction outside of SMM generates
an invalid opcode exception. When the RSM instruction
is executed and the processor detects invalid state in-
formation during the reloading of the save state, the

processor enters the shutdown state. This occurs in the
following situations:

m The value in the State Dump base field is not a
32-Kbyte aligned address

m A combination of bits in CRO is illegal: (PG=1 and
PE=0) or (NW=1 and CD=0)

In Shutdown mode, the processor stops executing in-
structions until an NMI interrupt is received or reset ini-
tialization is invoked. The processor generates a
shutdown bus cycle.

Three SMM features can be enabled by writing to control
slots in the SMRAM state save area:

1. Auto HALT Restart. It is possible for the SMI re-
guest to interrupt the HALT state. The SMI handler
can tell the RSM instruction to return control to the
HALT instruction or to return control to the instruc-
tion following the HALT instruction by appropriately
setting the Auto HALT Restart slot. The default op-
eration is to restart the HALT instruction.

2. 1/O Trap Restart. If the SMI was generated on an
I/0 access to a powered-down device, the SMI han-
dler can instruct the RSM instruction to re-execute
that 1/O instruction by setting the I/O Trap Restart
slot.

3. SMBASE Relocation. The system can relocate the
SMRAM by setting the SMBASE Relocation slot in
the state save area. The RSM instruction sets SM-
BASE in the processor based on the value in the
SMBASE relocation slot. The SMBASE must be
aligned on 32-Kbyte boundaries.

A RESET also causes execution to exit from SMM.

7.6 Processor Environment

When an SMI signal is recognized on an instruction ex-
ecution boundary, the processor waits for all stores to
complete, including emptying the write buffers. The final
write cycle is complete when the system returns RDY
or BRDY. The processor then drives SMIACT active,
saves its register state to SMRAM space, and begins to
execute the SMI handler.

SMI has greater priority than debug exceptions and ex-
ternal interrupts. This means that if more than one of
these conditions occur at an instruction boundary, only
the SMI processing occurs. Subsequent SMI requests
are not acknowledged while the processor is in SMM.
The first SMI request that occurs while the processor is
in SMM is latched, and serviced when the processor
exits SMM with the RSM instruction. Only one SMi signal
is latched by the CPU while itis in SMM. When the CPU
invokes SMM, the CPU core registers are initialized as
indicated in Table 11.

44 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

Table 11. SMM Initial CPU Core Register Settings

Table 12. Segment Register Initial States

. . Segment : T
Register SMM Initial State Register Selector Base Attributes | Limit
Gen_eral Purpose | Unmodified cs? 3000h 30000h l6_b(!lt’ 4 Ghytes
Registers éxpand up

16-bit,
EFLAGS 0000 0002h DS 0000h | 00000000h expand up 4 Ghytes
CRO Bits 0, 2, 3, and 31 cleared (PE, EM, TS, ES | 000oh |00000000h | 6Bt |4 Ghites
o expand up
and PG); rest unmodified 165
] FS 0000h | 00000000h Ol 4 Ghytes
DR6 Unpredictable state expand up
16-bit,
DR7 0000 0400h GS 0000h | 00000000h expand up 4 Ghytes
GDTR, LDTR, | Unmodified ss | ooooh |00000000n | MOPR 4 Gbytes
IDTR, TSSR pand up
Notes:
EIP 0000 8000h 1. The segment limit check is 4 Gbytes instead of the usual
Note: 64 Kbytes.

Interrupts from INT and NMI are disabled on SMM entry.

The following is a summary of the key features in the
SMM environment:

Real mode style address calculation
4-Gbyte limit checking

IF flag is cleared

NMI is disabled

TF flag in EFLAGS is cleared; single step traps are
disabled

DRY7 is cleared; debug traps are disabled

The RSM instruction no longer generates an invalid
opcode error

m Default 16-bit opcode, register, and stack use

m All bus arbitration (HOLD, AHOLD, BOFF) inputs,
and bus sizing (BS8, BS16) inputs operate normally
while the CPU is in SMM

7.7 Executing System Management
Mode Handler
The processor begins execution of the SMI handler at

offset 8000h in the CS segment. The CS Base is initially
30000h, as shown in Table 12.

2. The Selector value for CS remains at 3000h even if the
SMBASE is changed.

The CS Base can be changed using the SMM Base
relocation feature. When the SMI handler is invoked,
the CPU’s PE and PG bits in CRO are reset to 0. The
processor is in an environment similar to Real mode,
but without the 64-Kbyte limit checking. However, the
default operand size and the default address size are
setto 16 bits. The EM bitis cleared so that no exceptions
are generated. (If the SMM was entered from Protected
mode, the Real mode interrupt and exception support
is not available.) The SMI handler should not use float-
ing-point unit instructions until the FPU is properly de-
tected (within the SMI handler) and the exception
support is initialized.

Because the segmentbases (otherthan CS) are cleared
to 0 and the segment limits are set to 4 Gbytes, the
address space may be treated as a single flat 4-Gbyte
linear space that is unsegmented. The CPU is still in
Real mode and when a segment selector is loaded with
a 16-bit value, that value is then shifted left by 4 bits and
loaded into the segment base cache.

In SMM, the CPU can access or jump anywhere within
the 4-Gbhyte logical address space. The CPU can also
indirectly access or perform a near jump anywhere with-
in the 4-Gbyte logical address space.

Amb5y86 Microprocessor 45

a AMD

PRELIMINARY

7.7.1 Exceptions and Interrupts with System
Management Mode

When the CPU enters SMM, itdisables INTR interrupts,
debug, and single step traps by clearing the EFLAGS,
DR6, and DR7 registers. This prevents a debug appli-
cation from accidentally breaking into an SMI handler.
This is necessary because the SMI handler operates
from a distinct address space (SMRAM) and the debug
trap does not represent the normal system memory
space.

For an SMI handler to use the debug trap feature of the
processor to debug SMI handler code, it must first en-
sure that an SMM-compliant debug handler is available.
The SMI handler must also ensure DR3-DRO is saved
to be restored later. The debug registers DR3—-DRO0 and
DR7 mustthen be initialized with the appropriate values.

For the processor to use the single step feature of the
processor, it must ensure that an SMM-compliant single
step handler is available and then set the trap flag in the
EFLAGS register. If the system design requires the pro-
cessor to respond to hardware INTR requests while in
SMM, it must ensure that an SMM-compliant interrupt
handler is available, and then set the interrupt flag in the
EFLAGS register (using the STI instruction). Software
interrupts are not blocked on entry to SMM, and the
system software designer must provide an SMM-com-
pliantinterrupt handler before attempting to execute any
software interrupt instructions. Note thatin SMM mode,
the interrupt vector table has the same properties and
location as the Real mode vector table.

NMI interrupts are blocked on entry to the SMI handler.
If an NMI request occurs during the SMI handler, it is
latched and serviced after the processor exits SMM.
Only one NMI request is latched during the SMI handler.
If an NMI request is pending when the processor exe-
cutes the RSM instruction, the NMI is serviced before
the next instruction of the interrupted code sequence.

Although NMI requests are blocked when the CPU en-
ters SMM, they may be enabled through software by
executing an IRET instruction. If the SMI handler re-
quires the use of NMI interrupts, it should invoke a dum-
my interrupt service routine to execute an IRET
instruction. When an IRET instruction is executed, NMI
interrupt requests are serviced in the same Real mode
manner in which they are handled outside of SMM.

7.7.2 SMM Revisions Identifier

The 32-bit SMM Revision Identifier specifies the version
of SMM and the extensions that are available on the
processor. The fields of the SMM Revision Identifiers
and bit definitions are shown in Table 13 and Table 14.
Bit 17 or 16 indicates whether the feature is supported
(1=supported, 0=not supported). The processor always
reads the SMM Revision Identifier at the time of a re-
store. The I/O Trap Extension and SMM Base Reloca-
tion bits are fixed. The processor writes these bits out
at the time it performs a save state.

Note: Changing the state ofthe reserved bits may result
in unpredictable processor behavior.

Table 13. SMM Revision Identifier

31-18 17 16 15-0
SMM Base I/O Trap .
Reserved Relocation Extension SMM Revision Level
00000000000000 1 1 0000h

Table 14. SMM Revision Identifier Bit Definitions

State at
: I Default State at
Bit Name Description State SMM SMM Exit Notes
Entry
SMM Base lfSMM Base Relocat!on Available 1 1 No Change in State
Relocation 0=SMM Base Relocation 1 0 0 No Change in State
Unavailable
. 1=1/0 Trapping Available 1 1 No Change in State
/O Trap Extension 0=1/0 Trapping Unavailable 1 0 0 No Change in State

46 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

7.7.3 Auto HALT Restart

The Auto HALT Restart slot at register offset (word lo-
cation) 7F02h in SMRAM indicates to the SMI handler
that the SMI interrupted the CPU during a HALT state;
bit 0 of slot 7F02h is set to 1 if the previous instruction
was a HALT (see Figure 28). If the SMI did not interrupt
the CPU in a HALT state, then the SMI microcode sets
bit 0 of the Auto HALT Restart slot to 0. If the previous
instruction was a HALT, the SMI handler can choose to
either set or reset bit 0. If this bit is set to 1, the RSM
microcode execution forces the processor to re-enter
the HALT state. If this bit is set to 0 when the RSM
instruction is executed, the processor continues execu-
tion with the instruction just after the interrupted HALT
instruction. If the HALT instruction is restarted, the CPU
will generate a memory access to fetch the HALT in-
struction (if it is not in the internal cache), and execute
a HALT bus cycle.

15 1 0
|

Reserved
| Register Offset 7F02h

L

HALT Auto Restart

Figure 28. Auto HALT Restart Register Offset

Table 15 shows the possible restart configurations. If
the interrupted instruction was not a HALT instruction
(bitOis setto 0 in the Auto HALT Restart slot upon SMM
entry), setting bit 0 to 1 will cause unpredictable behavior
when the RSM instruction is executed.

Table 15. HALT Auto Restart Configuration

Valueat Valug Processor Action on Exit
Entry |at Exit
0 0 Return to next instruction in interrupted
program
0 1 Unpredictable
1 0 Returns to instruction after HALT
1 1 Returns to interrupted HALT instruction

7.7.4 1/O Trap Restart

The 1/O instruction restart slot (register offset 7F00h in
SMRAM) gives the SMI handler the option of causing
the RSM instruction to automatically re-execute the in-
terrupted 1/O instruction (see Figure 29).

15 0

Register offset 7FO0h

1/0 instruction restart slot

Figure 29. I/O Instruction Restart Register Offset

When the RSM instruction is executed — if the I/O in-
struction restart slot contains the value OFFh —the CPU
automatically re-executes the I/O instruction that the
SMI signal trapped. If the I/O instruction restart slot con-
tains the value 00h when the RSM instruction is execut-
ed, thenthe CPU does not re-execute the /O instruction.
The CPU automatically initializes the 1/O instruction re-
start slot to 00h during SMM entry. The 1/O instruction
restart slot should be written only when the processor
has generated an SMI on an /O instruction boundary.
Processor operation is unpredictable when the 1/O in-
struction restart slot is set when the processor is servic-
ing an SMI that originated on a non-I/O instruction
boundary.

If the system executes back-to-back SMI requests, the
second SMI handler must not set the 1/O instruction re-
start slot. The second back-to-back SMI signal will not
have the 1/0 Trap Word set.

7.7.5 1/O Trap Word

The 1/0O Trap Word contains the address of the 1/0O ac-
cess that forced the external chipset to assert SMI,
whether it was a read or write access, and whether the
instruction that caused the access to the 1/0 address
was a valid 1/O instruction. Table 16 shows the layout.

Table 16. I/0 Trap Word Configuration

31-16 15-2 1 0

I/0O Address Reserved |Valid I/O Instruction R/W

Bits 31-16 contain the 1/O address that was being ac-
cessed at the time SMI became active. Bits 15-2 are
reserved.

If the instruction that caused the 1/O trap to occur was
a valid 1/O instruction (IN, OUT, INS, OUTS, REP INS,
or REP OUTS), the Valid I/O Instruction bit is set. If it
was not a valid 1/O instruction, the bit is saved as a 0.
For REP instructions, the external chip set should return
a valid SMI within the first access.

Bit 0 indicates whether the opcode that was accessing
the 1/0 location was performing either a read (1) or a
write (0) operation as indicated by the R/W bit.

Amb5y86 Microprocessor 47

a AMD

PRELIMINARY

If an SMI occurs and it does not trap an I/O instruction,
the contents of the 1/0 address and R/W bit are unpre-
dictable and should not be used.

7.7.6 SMM Base Relocation

The Am5y486 CPU family provides a new control regis-
ter, SMBASE. The SMRAM address space can be mod-
ified by changing the SMBASE register before exiting
an SMI handler routine. SMBASE can be changed to
any 32K-aligned value. (Values that are not 32K-aligned
cause the CPU to enter the shutdown state when exe-
cuting the RSM instruction.) SMBASE is set to the de-
fault value of 30000h on RESET. If SMBASE is changed
by an SMI handler, all subsequent SMI requests initiate
a state save at the new SMBASE.

The SMBASE slot in the SMM state save area indicates
and changes the SMI jump vector location and SMRAM
save area. When bit 17 of the SMM Revision Identifier
is set, then this feature exists and the SMRAM base and
consequently, the jump vector, are as indicated by the
SMM Base slot (see Figure 30). During the execution
of the RSM instruction, the CPU reads this slot and ini-
tializes the CPU to use the new SMBASE during the
next SMI. During an SMI, the CPU does its context save
to the new SMRAM area pointed to by the SMBASE,
stores the current SMBASE in the SMM Base slot (offset
7EF8h), and then starts execution of the new jump vec-
tor based on the current SMBASE (see Figure 31).

31 0
| | Register Offset 7TEF8h

SMM Base

Figure 30. SMM Base Slot Offset

The SMBASE must be a 32-Kbyte aligned, 32-bitinteger
that indicates a base address for the SMRAM context
save area and the SMI jump vector. For example, when
the processor first powers up, the range for the SMRAM
area s from 38000h—3FFFFh. The default value for SM-
BASE is 30000h.

As illustrated in Figure 31, the starting address of the
jump vector is calculated by:

SMBASE + 8000h

The starting address for the SMRAM state save area is
calculated by:

SMBASE + [8000h + 7FFFh]

When this feature is enabled, the SMRAM register map
is addressed according to the above formula.

SMRAM

SMBASE + 8000h

+ 7EFFh 4— Start of State Save

SMI Handler Entry Point
SMBASE + 8000h I

SMBASE

Figure 31. SRAM Usage

To change the SMRAM base address and SMI jump
vector location, SMI handler modifies the SMBASE slot.
Upon executing an RSM instruction, the processor
reads the SMBASE slot and stores it internally. Upon
recognition of the next SMI request, the processor uses
the new SMBASE slot for the SMRAM dump and SMI
jump vector. If the modified SMBASE slot does not con-
tain a 32-Kbyte aligned value, the RSM microcode caus-
es the CPU to enter the shutdown state.

7.8 SMM System Design Considerations
7.8.1 SMRAM Interface

The hardware designed to control the SMRAM space
must follow these guidelines:

m |nitialize SMRAM space during system boot up. Ini-
tialization must occur before the first SMI occurs.
Initialization of SMRAM space must include installa-
tion of an SMI handler and may include installation
of related data structures necessary for particular
SMM applications. The memory controller interfac-
ing SMRAM should provide a means for the initial-
ization code to open the SMRAM space manually.

m The memory controller must decode a minimum ini-
tial SMRAM address space of 38000h—3FFFFh.

m Alternate bus masters (such as DMA controllers)
must not be able to access SMRAM space. The sys-
tem should allow only the CPU, either through SMI
or during initialization, to access SMRAM.

m To implement a 0-V suspend function, the system
must have access to all normal system memory from
within an SMI handler routine. If the SMRAM over-
lays normal system memory (see Figure 32), there
must be a method to access overlaid system mem-
ory independently.

48 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

SMRAM Normal
memory
SMRAM
Normal Overlaid region
memory
Normal
memory
Non-overlaid Overlaid
(no need to flush (caches must
caches) be flushed)

Figure 32. SMRAM Location

The recommended configuration is to use a separate
(non-overlaid) physical address for SMRAM. This non-
overlaid scheme prevents the CPU from improperly ac-
cessing the SMRAM or system RAM directly or through
the cache. Figure 33 shows the relative SMM timing for
non-overlaid SMRAM for systems configured in Write-
through mode. For systems configured in Write-back
mode, WB/WT must be driven Low (as shown in Figure
34) to force caching during SMM to be write-through.
Alternately, caching can be disabled during SMM by
deasserting KEN with SMI (as shown in Figure 35).

When the default SMRAM location is used, however,
SMRAM is overlaid with system main memory (at
38000h—3FFFFh). For simplicity, system designers may
want to use this default address, or they may select
another overlaid address range. However, in this case
the system control circuitry must use SMIACT to distin-
guish between SMRAM and main system memory, and
must restrict SMRAM space access to the CPU only.
To maintain cache coherency and to ensure proper
system operation in systems configured in Write-
through mode, the system must flush both the CPU inter-
nal cache and any second level caches in response to
SMIACT going Low. A system that uses cache during
SMM must flush the cache a second time in response
to SMIACT going High (see Figure 36). If KEN is driven
High when FLUSH is asserted, the cache is disabled
and a second flush is not required (see Figure 37). If the
system is configured in Write-back mode, the cache
must be flushed when SMIis asserted and then disabled
(see Figure 38).

7.8.2 Cache Flushes

The CPU does not unconditionally flush its cache before
entering SMM. Therefore, the designer must ensure
that, for systems using overlaid SMRAM, the cache is
flushed upon SMM entry and SMM exit if caching is
enabled.

Note: A cache flush in a system configured in Write-
back mode requires a minimum of 4100 internal clocks
to test the cache for modified data, whether invoked by

the FLUSH pin input or the WBINVD instruction, and
therefore invokes a performance penalty. There is no
flush penalty for systems configured in Write-through
mode.

If the flush at SMM entry is not done, the first SMM read
could hitin a cache that contains normal memory space
code/data instead of the required SMI handler, and the
handler could not be executed. If the cache is not dis-
abled and is not flushed at SMM exit, the normal read
cycles after SMM may hit in a cache that may contain
SMM code/data instead of the normal system memory
contents.

In Write-through mode, assert the FLUSH signal in re-
sponse to the assertion of SMIACT at SMM entry, and,
if required because the cache is enabled, assert FLUSH
againin response to the deassertion of SMIACT at SMM
exit (see Figure 36 and Figure 37). For systems config-
ured in Write-back mode, assert FLUSH with SMI (see
Figure 38).

Reloading the state registers at the end of SMM restores
cache functionality to its pre-SMM state.

7.8.3 A20M Pin

Systems based on the MS-DOS operating system con-
tain a feature that enables the CPU address bit A20 to
be forced to 0. This limits physical memory to a maxi-
mum of 1 Mbyte, and is provided to ensure compatibility
with those programs that relied on the physical address
wraparound functionality of the original IBM PC. The
A20M pin on Am5y486 CPUs provides this function.
When A20M is active, all external bus cycles drive A20
Low, and all internal cache accesses are performed with
A20 Low.

The A20M pin is recognized while the CPU is in SMM.
The functionality of the A20M input must be recognized
in two instances:

1. Ifthe SMI handler needs to access system memory
space above 1 Mbyte (for example, when saving
memory to disk for a 0-V suspend), the A20M pin
must be deasserted before the memory above 1
Mbyte is addressed.

2. If SMRAM has been relocated to address space
above 1 Mbyte, and A20M is active upon entering
SMM, the CPU attempts to access SMRAM at the
relocated address, but with A20 Low. This could
cause the system to crash, because there would be
no valid SMM interrupt handler at the accessed lo-
cation.

To account for these two situations, the system designer
must ensure that A20M is deasserted on entry to SMM.
A20M must be driven inactive before the first cycle of
the SMM state save, and must be returned to its original
level after the last cycle of the SMM state restore. This
can be done by blocking the assertion of A20M when
SMIACT is active.

Amb5y86 Microprocessor 49

pu |

AMD PRELIMINARY

Normal
Cycle

MI Handler State Resume

E

SMIACT \

Figure 33. SMM Timing in Systems Using Non-Overlaid Memory Space
and Write-Through Mode with Caching Enabled During SMM

| State | | | Normal
| Save I SMI Handler | State Resume | Cycle
SMI \ / | [| |
| | | / RSM |
SMIACT | | (Z;
| | [i |
| | | |
Note:

For proper operation of systems configured in Write-back mode when caching during SMM is allowed, force WB/WT Low to
force all caching to be write-through during SMM.

Figure 34. SMM Timing in Systems Using Non-Overlaid Memory Spaces
and Write-Back Mode with Caching Enabled During SMM

| Normal

| State | |
Save SMI Handler State Resume Cycle

E

SHIACT | I/ S
(

:
[
:

Figure 35. SMM Timing in Systems Using Non-Overlaid Memory Spaces
and Write-Back Mode with Caching Disabled During SMM

50 Amb5y86 Microprocessor

PRELIMINARY AMD l"l

State State Normal

Instruction x Save SMI Handler Resume Cycle

SvI \ / : :
SMIACT l : :/ /ggl

Cache contents
invalidated

S [Instruction x+1
|
|
|
|

Cache contents
invalidated

Figure 36. SMM Timing in Systems Using Overlaid Memory Space and
Write-Through Mode with Caching Enabled During SMM

SMI
j Instruction x+1

State | | State Normal

Instruction x | Save | MI Handler | Resume | Cycle

SMI \ / | | | .
SMIACT ﬁ : : / /9!57

| 1 T
Cache contents /\TL\—/ | (
invalidated |
/ l | L

Figure 37. SMM Timing in Systems Using Overlaid Memory Spaces and
Write-Through Mode with Caching Disabled During SMM

9

T
-
Cl
)
T

A
m)
P

State SMI Handler State Normal Cycle

Cache Flush State | w Save Resume

RSM

|V
N

Cache must
be empty

Figure 38. SMM Timing in Systems Using Overlaid Memory Spaces
and Configured in Write-Back Mode

Amb5y86 Microprocessor 51

a AMD

PRELIMINARY

7.8.4 CPU Reset During SMM

The system designer should take into account the fol-
lowing restrictions while implementing the CPU Reset
logic:

1. When running software written for the 80286 CPU,
a CPU RESET switches the CPU from Protected
mode to Real mode. RESET and SRESET have a
higher priority than SMI. When the CPU is in SMM,
the SRESET to the CPU during SMM should be
blocked until the CPU exits SMM. SRESET must
be blocked beginning from the time when SMI is
driven active. Care should be taken not to block the
global system RESET, which may be necessary to
recover from a system crash.

2. During execution of the RSM instruction to exit
SMM, there is a small time window between the
deassertion of SMIACT and the completion of the
RSM microcode. If a Protected mode to Real mode
SRESET is asserted during this window, it is pos-
sible that the SMRAM space will be violated. The
system designer must guarantee that SRESET is
blocked until at least 20 CPU clock cycles after SMI-
ACT has been driven inactive or until the start of a
bus cycle.

3. Any request for a CPU RESET for the purpose of
switching the CPU from Protected mode to Real
mode must be acknowledged after the CPU has
exited SMM. To maintain software transparency,
the system logic must latch any SRESET signals
that are blocked during SMM.

For these reasons, the SRESET signal should be used
for any soft resets, and the RESET signal should be
used for all hard resets.

7.8.5 SMM and Second Level Write Buffers

Before the processor enters SMM, it empties its internal
write buffers. This is to ensure that the data in the write
buffers is written to normal memory space, not SMM
space. When the CPU is ready to begin writing an SMM
state save to SMRAM, it asserts SMIACT. SMIACT may
be driven active by the CPU before the system memory
controller has had an opportunity to empty the second
level write buffers.

To preventthe data from these second level write buffers
from being written to the wrong location, the system
memory controller needs to direct the memory write cy-
cles to either SMM space or normal memory space. This
can be accomplished by saving the status of SMIACT
with the address for each word in the write buffers.

7.8.6 Nested SMI and I/O Restart

Special care must be taken when executing an SMIhan-
dlerfor the purpose of restarting an I/O instruction. When
the CPU executes a Resume (RSM) instruction with the
I/O restart slot set, the restored EIP is modified to point
to the instruction immediately preceding the SMI re-

quest, so that the I/O instruction can be re-executed. If
a new SMI request is received while the CPU is execut-
ing an SMI handler, the CPU services this SMI request
before restarting the original I/O instruction. If the I/O
restart slot is set when the CPU executes the RSM in-
struction for the second SMI handler, the RSM micro-
code decrements the restored EIP again. EIP then
points to an address different from the originally inter-
rupted instruction, and the CPU begins execution at an
incorrect entry point. To prevent this from occurring, the
SMI handler routine must not set the 1/0 restart slot
during the second of two consecutive SMI handlers.

7.9 SMM Software Considerations
7.9.1 SMM Code Considerations

The default operand size and the default address size
are 16 bits; however, operand-size override and ad-
dress-size override prefixes can be used as needed to
directly access data anywhere within the 4-Gbyte logical
address space.

With operand-size override prefixes, the SMI handler
can use jumps, calls, and returns to transfer a control
to any location within the 4-Gbyte space. Note, however,
the following restrictions:

1. Any control transfer that does not have an operand-
size override prefix truncates EIP to 16 Low-order bits.

2. Duetothe Real mode style of base-address formation,
a long jump or call cannot transfer control segment
with a base address of more than 20 bits (1 Mbyte).

7.9.2 Exception Handling

Upon entry into SMM, external interrupts that require
handlers are disabled (the IF in EFLAGS is cleared).
This is necessary because, while the processor is in
SMM, it is running in a separate memory space. Con-
sequently, the vectors stored in the interrupt descriptor
table (IDT) for the prior mode are not applicable. Before
allowing exception handling (or software interrupts), the
SMM program must initialize new interrupt and excep-
tion vectors. The interrupt vector table for SMM has the
same format as for Real mode. Until the interrupt vector
table is correctly initialized, the SMI handler must not
generate an exception (or software interrupt). Even
though hardware interrupts are disabled, exceptions
and software interrupts can still occur. Only a correctly
written SMI handler can prevent internal exceptions.
When new exception vectors are initialized, internal ex-
ceptions can be serviced. Restrictions are as follows:

1. Due to the Real mode style of base address forma-
tion, an interrupt or exception cannot transfer con-
trol to a segment with a base address of more than
20 bits.

2. An interrupt or exception cannot transfer control to
a segment offset of more than 16 bits.

3. If exceptions or interrupts are allowed to occur, only
the Low order 16 bits of the return address are

52 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

pushed onto the stack. If the offset of the interrupted
procedure is greater than 64 Kbytes, it is not possi-
ble for the interrupt/exception handler to return con-
trol to that procedure. (One work-around is to
perform software adjustment of the return address
on the stack.)

4. The SMBASE Relocation feature affects the way
the CPU returns from an interrupt or exception dur-
ing an SMI handler.

Note: The execution of an IRET instruction enables
Non-Maskable Interrupt (NMI) processing.

7.9.3 Halt during SMM

HALT should not be executed during SMM, unless in-
terrupts have been enabled. Interrupts are disabled on
entry to SMM. INTR and NMI are the only events that
take the CPU out of HALT within SMM.

7.9.4 Relocating SMRAM to an Address above
1 Mbyte

Within SMM (or Real mode), the segment base registers
can be updated only by changing the segment register.
The segmentregisters contain only 16 bits, which allows
only 20 bits to be used for a segment base address (the
segment register is shifted left 4 bits to determine the
segment base address). If SMRAM is relocated to an
address above 1 Mbyte, the segment registers can no
longer be initialized to point to SMRAM.

These areas can still be accessed by using address
override prefixes to generate an offset to the correct
address. For example, if the SMBASE has been relo-
cated immediately below 16 Mbytes, the DS and ES
registers are still initialized to 0000 0000h. Data in SM-
RAM can still be accessed by using 32-bit displacement
registers

nmove esi, OOFFxxxxh ; 64K segnent
i mredi at el y bel ow16M

nove ax, ds:[esi]

8 TEST REGISTERS 4 AND 5
MODIFICATIONS

The Cache Test Registers for the Am5y86 microproces-
sor are the same test registers (TR3, TR4, and TR5)
provided in Am486 microprocessors. TR3 is the cache
test data register. TR4, the cache test status register,
and TR5, the cache test control register, operate togeth-
er with TR3.

If WB/WT meets the necessary setup timing and is sam-
pled Low on the falling edge of RESET, the processor
is placed in Write-through mode and the test register
function is identical to the Am486 microprocessors. If
WB/WT meets the necessary setup timing and is sam-
pled High on the falling edge of RESET, the processor
is placed in Write-back mode and the test registers TR4
and TR5 are modified to support the added write-back
cache functionality. Tables 17 and 18 show the individ-
ual bit functions of these registers. Sections 8.1 and 8.2
provide a detailed description of the field functions.

Note: TR3 has the same functions in both Write-through
and Write-back modes. These functions are identical to
the TR3 register functions provided by Am486 micro-
processors.

8.1 TR4 Definition

This section includes a detailed description of the bit
fields defined for TR4.

Note: Bits listed in Table 17 as Reserved or Not used
are not included in these descriptions.

m Tag (bits 31-12): Read/Write, always available in
Write-through mode. Available only when EXT=0 in
TRS5 in Write-back mode. For a cache write, this is
the tag that specifies the address in memory. On a
cache look-up, this is tag for the selected entry in the
cache.

Table 17. Test Register TR4 Bit Descriptions

31 |30—29| 28 | 27-26 | 25-24 | 23-22 | 21-20 | 19-16 | 15-12 11| 10 | 9-7 | 6-3 | 2-0
EXT=0 . Valid | Not
Tag 0 | Valid | LRU (rd) | used
_ Not . Valid | Not
EXT=1| sed STn |Rsvd.| ST3 ST2 ST1 STO Reserved Not used Valid | LRU (rd) | used
Notes:
1. The values of STn and ST3-STO0 are: 00 = Invalid; 01 = Exclusive; 10 = Modified; 11 = Shared.
2. During a cache look-up, bit 11 is read only and always 0. The bit is read/write otherwise.
Table 18. Test Register TR5 Bit Descriptions
31-20 19 18-17 16 15-12 11-4 3-2 1-0
Write-Back Not used Ext Set State Reserved Not used Index Entry Control
Write-Through Not used Index Entry Control
Notes:

1. Bit19in TR5 is EXT. If EXT = 0, TR4 has the standard 486 processor definition for write-through cache.
2. The values of Set State are: 00 = Invalid; 01 = Exclusive; 10 = Modified; 11 = Shared.

Amb5y86 Microprocessor 53

a AMD

PRELIMINARY

STn (bits 30-29): Read Only, available only in Write-
back mode when Ext=1 in TR5. STn returns the sta-
tus of the set (ST3, ST2, ST1, or STO) specified by
the TR5 Set State field (bits 18-17) during cache
look-ups. Returned values are:

— 00 = invalid
— 01 = exclusive
— 10 = modified
— 11 = shared

ST3 (bits 27-26): Read Only, available only in Write-
back mode when Ext=1 in TR5. ST3 returns the sta-
tus of Set 3 during cache look-ups. Returned values
are:

— 00 = invalid
— 01 = exclusive
— 10 = modified
— 11 = shared

ST2 (bits 25—-24): Read Only, available only in Write-
back mode when Ext=1 in TR5. ST2 returns the sta-
tus of Set 2 during cache look-ups. Returned values
are:

— 00 = invalid
— 01 = exclusive
— 10 = modified
— 11 = shared

ST1 (bits 23—-22): Read Only, available only in Write-
back mode when Ext=1 in TR5. ST1 returns the sta-
tus of Set 1 during cache look-ups. Returned values
are:

— 00 = invalid
— 01 = exclusive
— 10 = modified
— 11 = shared

STO (bits 21-20): Read Only, available only in Write-
back mode when Ext=1 in TR5. STO returns the sta-
tus of Set 0 during cache look-ups. Returned values
are:

— 00 = invalid
— 01 = exclusive
— 10 = modified
— 11 = shared

Valid (bit 10): Read/Write, independent of the Ext bit
in TR5. This is the Valid bit for the accessed entry.
On a cache look-up, Valid is a copy of one of the bits
reported in bits 6-3. On a cache write in Write-
through mode, Valid becomes the new Valid bit for
the selected entry and set. In Write-back mode, writ-
ing to the Valid bit has no effect and is ignored; the

Set State bit locations in TR5 are used to set the
Valid bit for the selected entry and set.

m LRU (bits 9-7): Read Only, independent of the Ext
bit in TR5. On a cache look-up, these are the three
LRU bits of the accessed set. On a cache write,
these bits are ignored; the LRU bits in the cache are
updated by the pseudo-LRU cache replacement al-
gorithm. Write operations to these locations have
no effect on the device.

m Valid (bits 6-3): Read Only, independent of the Ext
bit in TR5. On a cache look-up, these are the four
Valid bits of the accessed set. In Write-back mode,
these valid bits are set if a cache set is in the exclu-
sive, modified, or shared state. Write operations to
these locations have no effect on the device.

8.2 TR5 Definition

This section includes a detailed description of the bit
fields in the TR5.

Note: Bits listed in Table 18 as Reserved or Not Used
are not included in the descriptions.

m Ext(bit 19): Read/Write, available only in Write-back
mode. Ext, or extension, determines which bit fields
are defined for TR4: the address TAG field, or the
STn and ST3-STO status bit fields. In Write-through
mode, the Ext bit is not accessible. The following
describes the two states of Ext:

— Ext =0, bits 31-11 of TR4 contain the TAG ad-
dress

— Ext =1, bits 30—29 of TR4 contain STn, bits 27—
20 contain ST3-STO

m Set State (bits 18—-17): Read/Write, available only in
Write-back mode. The Set State field is used to
change the MESI state of the set specified by the
Index and Entry bits. The state is set by writing one
of the following combinations to this field:

— 00 =invalid
— 01 = exclusive
— 10 = modified
— 11 = shared

m Index (bits 11-4): Read/Write, independent of write-
through or Write-back mode. Index selects one of
the 256 cache lines.

m Entry (bits 3-2): Read/Write, independent of write-
through or Write-back mode. Entry selects between
one of the four entries in the set addressed by the
Set Select during a cache read or write. During
cache fill buffer writes or cache read buffer reads,
the value in the Entry field selects one of the four
doublewords in a cache line.

54

Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

m Control (bits 1-0): Read/Write, independent of Write-
through or Write-back mode. The control bits deter-
mine which operation to perform. The following is a
definition of the control operations:

— 00 = Write to cache fill buffer, or read from cache
read buffer

— 01 = Perform cache write
— 10 = Perform cache read
— 11 = Flush the cache (mark all entries invalid)

8.3 Using TR4 and TR5 for Cache Testing

The following paragraphs provide examples of testing
the cache using TR4 and TR5.

8.3.1 Example 1: Reading The Cache (Write-back
Mode Only)

1. Disable caching by setting the CD bit in the CRO
register.

2. InTR5, load 0 into the Ext field (bit 19), the required
index into the Index field (bits 10-4), the required
entry value into the Entry field (bits 3-2), and 10 into
the Control field (bits 1-0). Loading the values into
TR5 triggers the cache read. The cache read loads
the TR4 register with the TAG for the read entry,
and the LRU and Valid bits for the entire set that
was read. The cache read loads 128 data bits into
the cache read buffer. The entire buffer can be read
by placing each of the four binary combinations in
the Entry field and setting the Control field in TR5
to 00 (binary). Read each doubleword from the
cache read buffer through TR3.

3. Reading the Set State fields in TR4 during Write-
back mode is accomplished by setting the Ext field
in TR5 to 1 and rereading TR4.

8.3.2 Example 2: Writing The Cache

1) Disable the cache by setting the CD bit in the CRO
register.

2. InTR5, load 0 into the Ext field (bit 19), the required
entry value into the Entry field (bits 3-2), and 00 into
the Control field (bits 1-0).

3. Load the TRS3 register with the data to write to the
cache fill buffer. The cache fill buffer write is trig-
gered by loading TR3.

4. Repeat steps 2 and 3 for the remaining three dou-
blewords in the cache fill buffer.

5. InTR4, load the required values into TAG field (bits
31-11) and the Valid field (bit 10). In Write-back
mode, the Valid bit is ignored since the Set State
fieldin TR5 is used in place of the TR4 Valid bit. The
other bits in TR4 (9:0) have no effect on the cache
write.

6. InTR5,load 0 into the Ext field (bit 19), the required
value into the Set State field (bits 18-17) (Write-
back mode only), the required index into the Index
field (bits 10—-4), the required entry value into the
Entry field (bits 3—2), and 01 into the Control field
(bits 1-0). Loading the values into TR5 triggers the
cache write. In Write-through mode, the Set State
field is ignored, and the Valid bit (bit 10) in TR4 is
used instead to define the state of the specified set.

8.3.3 Example 3: Flushing The Cache

The cache flush mechanism functions in the same way
in Write-back and Write-through modes. Load 11 into
the Control field (bits 1-0) of TR5. All other fields are
ignored, except for Ext in Write-back mode. The cache
flush is triggered by loading the value into TR5. All of
the LRU bits, Valid bits, and Set State bits are cleared.

9 Am5y86 CPU Functional Differences

Several important differences exist between Am5y86
microprocessors and standard Am486DX microproces-
sors:

= The ID register contains a different version signa-
ture.

m The EADS function performs cache line write-backs
of modified lines to memory in Write-back mode.

= Aburst write feature is available for copy-backs. The
FLUSH pin and WBINVD instruction copy back all
modified data to external memory prior to issuing the
special bus cycle or reset.

The Am5486 processor is functionally identical to the
Enhanced Am486 processor except for the function of
the CLKMUL pin (see Section 9.3) and the redefinition
of TR4 and TR5 to access the 16-Kbyte cache (see
Section 8).

9.1 Status after Reset

The RESET state is invoked either after power up or
after the RESET signal is applied according to the stan-
dard Am486DX microprocessor specification.

9.2 Cache Status
After reset, the STATUS bits of all lines are setto 0. The
LRU bits of each set are placed in a starting state.

9.3 CLKMUL Pin

For the standard Am486 processor, the Enhanced
Am486 processor, and the Am5y486 processor, if the
CLKMUL pin is driven High at RESET, the processor
uses a Clock-tripled mode.

To ensure correct operation of the 133-MHz Am5y86
processor, always connect the CLKMUL input to V.

Amb5y86 Microprocessor 55

a AMD

PRELIMINARY

10 Amb5486 CPU IDENTIFICATION

The Am5486 microprocessor supports two standard
methods for identifying the CPU in a system. The re-
ported values are assigned based on the RESET status
of the WB/WT pin input (Low = write-through; High =
write-back).

10.1 DX Register at RESET

The DX register always contains a component identifier
at the conclusion of RESET. The upper byte of DX (DH)
contains 04 and the lower byte of DX (DL) contains a
CPU type/stepping identifier (see Table 19).

Table 19. CPU ID Codes

. Component | Revision
CLKMUL Setting/Cache mode ID (DH) D (DL)
Write-through mode 04 Ex
Write-back mode 04 Fx

10.2 CPUID Instruction

The Am5y486 microprocessor family implements the
CPUID instruction that makes information available to
software about the family, model and stepping of the
microprocessor on which it is executing. Support of this
instruction is indicated by the presence of a user-mod-
ifiable bit in position EFLAGS.21, referred to as the
EFLAGS.ID bit. This bit is reset to zero at device reset
(RESET or SRESET) for compatibility with existing pro-
cessor designs.

10.2.1 CPUID Timing

CPUID execution timing depends on the selected EAX
parameter values (see Table 20).

Table 20. CPUID Instruction Description

EAX CPU
OP | nstruction Input Core Description
Code Value |Clocks
0 41 |AMD string
OF A2 |[CPUID 1 14 |CPU ID Register
>1 9 null registers

10.2.2 CPUID Operation

The CPUID instruction requires the userto pass an input
parameter to the CPU in the EAX register. The CPU
response is returned to the user in registers EAX, EBX,
ECX, and EDX.

When the parameter passed in EAX is zero, the register
values returned upon instruction execution are:

EAX[31:0] <«— 00000001h
EBX[31:0] <— 68747541h
ECX[31:0] -— 444D4163h
EDX[31:0] «— 69746E65h

The values in EBX, ECX, and EDX indicate an AMD
microprocessor. When taken in the proper order:

m EBX (least significant bit to most significant bit)
m EDX (least significant bit to most significant bit)
m ECX (least significant bit to most significant bit)
they decode to

AuthenticAMD
When the parameter passed in EAX is 1, the register
values returned are:

EAX[3:0] --— Stepping ID*

EAX[7:4] -«— model:

Am5y86 CPU:
Write-through mode = Eh
Write-back mode = Fh

Family

486 Instruction Set = 4h
EAX[15:12]«— 0000

EAX[31:16]«— RESERVED

EBX[31:0] «— 00000000h

ECX[31:0] -«-— 00000000h

EDX[31:0] .«— 00000001h = all versions

The 1in bit 0 indicates that the FPU
is present

EAX[11:8] <—

Note:
*Please contact AMD at (800) 222-9323
for stepping ID details.

The value returned in EAX after CPUID instruction ex-
ecution is identical to the value loaded into EDX upon
device reset. Software must avoid any dependency
upon the state of reserved processor bits.

When the parameter passed in EAX is greater than one,
register values returned upon instruction execution are:

EAX[31:0] <— 00000000h
EBX[31:0] <— 00000000h
ECX[31:0] <— 00000000h
EDX[31:0] «— 00000000h

Flags affected: No flags are affected.
Exceptions: None

56 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

11 Electrical Data

The following sections describe recommended electri-
cal connections for the Am5y486 microprocessors and
electrical specifications.

11.1 Power and Grounding
11.1.1 Power Connections

Amb5,86 microprocessors with 16 Kbytes of cache have
modest power requirements. However, the high clock
frequency output buffers can cause power surges as
multiple output buffers drive new signal levels simulta-
neously. For clean, on-chip power distribution at high
frequency, 23 V¢ pins and 28 Vg pins feed the micro-
processor in the 168-pin PGA package. The 208-pin
SQFP package includes 53 V¢ pins and 38 Vg pins.

Power and ground connections must be made to all
external V¢ and Vgg pins of the microprocessors. On a
circuit board, all V¢ pins must connect to a V¢ plane.
Likewise, all Vg pins must connect to a common GND
plane.

The Am5y86 microprocessor family requires only 3.3 V
as input power. Unlike other 3-V processors, the
Amb5y86 microprocessor family does not require a
Ves input of 5 V to indicate the presence of 5-V 1/O
devices on the system motherboard. For socket com-
patibility, this pin is INC, allowing the Am5486 CPU to
operate in 3-V sockets in systems that use 5-V I/O.

11.1.2 Power Decoupling Recommendations

Liberal decoupling capacitance should be placed near
the microprocessor. The microprocessor, driving its 32-
bit parallel address and data buses at high frequencies,
can cause transient power surges, particularly when
driving large capacitive loads.

Low inductance capacitors and interconnects are rec-
ommended for best high-frequency electrical perfor-
mance. Inductance can be reduced by shortening circuit
board traces between the microprocessor and the de-
coupling capacitors. Capacitors designed specifically
for use with PGA packages are commercially available.

11.1.3 Other Connection Recommendations

For reliable operation, always connect unused inputs to
an appropriate signal level. Active Low inputs should be
connected to V. through a pull-up resistor. Pull-ups in
the range of 20 KQ are recommended. Active High in-
puts should be connected to GND.

Amb5y86 Microprocessor 57

a AMD

PRELIMINARY

ABSOLUTE MAXIMUM RATINGS

Case Temperature under Bias ... —65°C to +110°C

Storage Temperature — 65°C to +150°C
Voltage on any pin

with respect to ground -05VtoV,+2.6V
Supply voltage with

respecttoVgg —-05Vto+46V

Stresses above those listed under Absolute Maximum Ratings
may cause permanent device failure. Functionality at or above
these limits is not implied. Exposure to Absolute Maximum
Ratings for extended periods may affect device reliability.

OPERATING RANGES
Commercial (C) Devices

TCASE 0°C to 85°C
VGG + ot ettt 33V 03V

Operating Ranges define those limits between which the func-
tionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges

Vee =3.3V +0.3V; Tease = 0°C to + 85°C

Preliminary Info
Symbol Parameter Min Max Notes
ViL Input Low Voltage -03V +0.8V
ViH Input High Voltage 20V |Vect+24V
VoL Output Low Voltage 045V INote 1
Vou Output High Voltage 24V Note 2
lcc Power Supply Current: 133 MHz 931 mA |Typical supply current: 825 mA @ 133
MHz. Inputs at rails, outputs unloaded.
lccSTOPGRANT Input Current in Stop Grant or Auto Halt mode Typical supply current for Stop Grant or
Or lccAUTOHALT 133 MHz 93 mA |Auto Halt mode: 50 mA @ 133 MHz.
lcesTPCLK Input Current in Stop Clock mode 5 mA ;%p(ji(éelilssggglz:urrent in Stop Clock
I Input Leakage Current *15PA |Note 3
I Input Leakage Current 200 HA | Note 4
he Input Leakage Current —400 PA |Note 5
ILo Output Leakage Current +15 pA
Cin Input Capacitance 10pF |F; =1 MHz (Note 6)
Co I/O or Output Capacitance 14 pF |F; =1 MHz (Note 6)
CeLk CLK Capacitance 12pF |F; =1 MHz (Note 6)
Notes:

S WNR

Not 100% tested.

This parameter is measured at: Address, Data, BE3—BEO = 4.0 mA; Definition, Control = 5.0 mA
This parameter is measured at: Address, Data, BE3—BEO = —1.0 mA; Definition, Control = —0.9 mA
This parameter is for inputs without internal pull-ups or pull-downs and 0< Vi< Vc.

This parameter is for inputs with internal pull-downs and Vi, = 2.4 V.

This parameter is for inputs with internal pull-ups and Vi, =0.45 V.

58 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges

The AC specifications, provided in the AC characteris-
tics table, consist of output delays, input setup require-
ments, and input hold requirements. All AC specifica-
tions are relative to the rising edge of the CLK signal.
AC specifications measurementis defined by Figure 39.
All timings are referenced to 1.5 V unless otherwise
specified. Am5y86 microprocessor output delays are

specified with minimum and maximum limits, measured
as shown. The minimum microprocessor delay times
are hold times provided to external circuitry. Input setup
and hold times are specified as minimums, defining the
smallest acceptable sampling window. Within the sam-
pling window, a synchronous input signal must be stable
for correct microprocessor operation.

33-MHz bus (133-MHz operating frequency)

Vee = 3.3V 0.3V, Teage = 0°C to + 85°C; C, = 50 pF unless otherwise specified

Preliminary Info
Symbol Parameter Min Max Unit Figure Notes
Frequency 8 33 MHz Note 2
ty CLK Period 30 125 ns 39
tia |CLK Period Stability 01% | A Adjacent Clocks
Notes 3 and 4
t, CLK High Time at 2 V 11 ns 39 Note 3
t3 CLK Low Time at 0.8 V 1 ns 39 Note 3
t CLK Fall Time (2 V=0.8 V) ns 39 Note 3
ts CLK Rise Time (0.8 V-2 V) ns 39 Note 3
A31-A2, PWT, PCD, BE3-BED, M/, D/C, CACHE, Note 5
ts WI/R, ADS, LOCK, FERR, BREQ, HLDA, 3 14 ns 40
SMIACT, HITM Valid Delay
t, A31-A2, PWT, PCD, BE3-BED, M/, D/C, TACHE, 3 20 ns a1 Note 3
W/R, ADS, LOCK Float Delay
tg PCHK Valid Delay 3 14 ns 42
tsa |BLAST, PLOCK, Valid Delay 3 14 ns 40
t BLAST, PLOCK, Float Delay 3 20 ns 41 Note 3
tio |D31-DO, DP3-DPO Write Data Valid Delay 3 14 ns 40
ti1 |D31-D0, DP3-DPO Write Data Float Delay 3 20 ns 41 Note 3
ti, |EADS, INV, WB/WT Setup Time 5 ns 43
tis |EADS, INV, WB/WT Hold Time 3 ns 43
tiu |KEN, BS16, BS8 Setup Time 5 ns 43
tis |KEN, BS16, BS8 Hold Time 3 ns 43
tic |RDY, BRDY Setup Time 5 ns 44
ty7 RDY, BRDY Hold Time 3 ns 44
tis |HOLD, AHOLD Setup Time 6 ns 43
tiga |BOFF Setup Time 7 ns 43
tiy |HOLD, AHOLD, BOFF Hold Time 3 ns 43
t,, |RESET, FLUSH, A20M, NMI, INTR, IGNNE, 5 ns 43 Note 5
STPCLK, SRESET, SMI Setup Time
t,, |RESET, FLUSH, A20M, NMI, INTR, IGNNE, 3 ns 43 Note 5
STPCLK, SRESET, SMI Hold Time
tro D31-D0, DP3-DP0, A31-A4 Read Setup Time ns 43, 44
tr3 D32-D0, DP3-DPO0, A31-A4 Read Hold Time ns 43, 44

Notes:

. Specifications assume C; =50 pF. I/O Buffer model must be used to determine delays due to loading (trace and component). First

Order I/O buffer models for the processor are available.
. 0-MHz operation guaranteed during stop clock operation.

. For faster transitions (>0.1% between adjacent clocks), use the Stop Clock protocol to switch operating frequency.
. All timings are referenced at 1.5 V (as illustrated in the listed figures) unless otherwise noted.

1
2
3. Not 100% tested. Guaranteed by design characterization.
4
5.

Amb5y86 Microprocessor 59

e\ AvD PRELIMINARY

Am5486 Microprocessor AC Characteristics for
Boundary Scan Test Signals at 25 MHz
Vee = 3.3V 0.3V, Teage = 0°C to +85°C; C, = 50 pF unless otherwise specified

Preliminary Info
Symbol Parameter Min Max Unit Figure Notes
24 |TCK Frequency 25 MHz 1x Clock
s | TCK Period 40 ns 45,46 |Note 1
e |TCK High Time at2 V 10 ns 45
7 |TCK Low Time at 0.8 V 10 ns 45
s |TCK Rise Time (0.8 V-2 V) 4 ns 45 Note 2
te | TCK Fall Time (2 V-0.8 V) 4 ns 45 Note 2
t0 | TDI, TMS Setup Time 8 ns 46 Note 3
31 |TDI, TMS Hold Time 7 ns 46 Note 3
t32 | TDO Valid Delay 3 25 ns 46 Note 3
33 |TDO Float Delay 36 ns 46 Note 3
tsa | All Outputs (Non-Test) Valid Delay 3 25 ns 46 Note 3
t3s | All Outputs (Non-Test) Float Delay 30 ns 46 Note 3
t3s | All Inputs (Non-Test) Setup Delay 8 ns 46 Note 3
t37 | All Inputs (Non-Test) Hold Time 7 ns 46 Note 3
Notes:

1. TCK period= CLK period.
2. Rise/Fall times can be relaxed by 1 ns per 10-ns increase in TCK period.
3. Parameter measured from TCK.

60 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

Key to Switching Waveforms

Waveform

AN\
Va

Inputs

Must be steady

HtoL

LtoH

Don't care; any

Does not apply

May change from

May change from

change permitted

Outputs

Changing;
state unknown

Center line is
High-impedance
“Off” state

Will be steady

Will change
fromHto L

Will change
from Lto H

t4
Figure 39. CLK Wa

veforms

CLK

A31-A2, PWT, PCD,
CACHE, BE3-BEO, M/iO,
D/C, W/R, ADS,

LOCK, FERR, BREQ,
SMIACT, HLDA, HITM

D31-DO,
DP3-DPO,
(Write)

BLAST, PLOCK

Tx

min. tg —»]

Tx

le— max. tg —|

Valid n

T

Validn + 1

min. t10—>

le— max. tp—|

|: Valid n

AR

Validn + 1

min. tg,—»

le— max. tg;—|

|: Valid n

AR

Validn + 1

Figure 40. Output Valid Delay Timing

Amb5y86 Micropro

cessor

61

e\ AvD PRELIMINARY

CLK |:

A31-A2, PWT, PCD, min. te—s

<—t7—>

CACHE, BEO-BE3, M/IO, _
T bic. Wik, ADS, | vais I\
LOCK, FERR, BREQ,

HLDA

) — tg —»
min. tsa—b

A
BLAST. PLOCK [vaig

— t11 o

min. tio—

D1-Do, [
DP3- 0P [Valiidm

Figure 41. Maximum Float Delay Timing

CLK i /__/
oraoro | W e R

max.
le— t8 —

min. tg— [—

PoRK | T Vaid

AN

Figure 42. PCHK Valid Delay Timing

62 Amb5y86 Microprocessor

PRELIMINARY

AMD l"l

CLK

EADS,
INV, WB/WT

BS8, BS16,
KEN

BOFF,
AHOLD,
HOLD

RESET, FLUSH,
_A20M, IGNNE,
SMI, INTR, NMI,
STPCLK, SRESET

A31-A4
(Read)

B

B

B

<—t12—>4—t13—>

<—t14—>4—t15—>

A

<—t18—>4—t19—>

A

<—t20 —><—t21 —>

<—t22—>4—t23—>

Figure 43. Input Setup and Hold Timing

Tx Tx
CLK |:
<—t16—>4—t17—>
RDY, BRDY \\\\\\ _
<—t22—>4—t23—>
D31-DO
DP3-DPO)

1.5V

1.5V

Figure 44. RDY and BRDY Input Setup and Hold Timing

Amb5y86 Microprocessor

63

e\ AvD PRELIMINARY

Figure 45. TCK Waveforms

<—t25

w |/ Y)

t30—><—t31 —>
TDI, TMS (XXX
<—t32—> <—t33

<—t34—> <—t35

Output |: ><
Signals

Input |:
Signals

Figure 46. Test Signal Timing Diagram

64 Amb5y86 Microprocessor

AMD l"l

PRELIMINARY
12 PACKAGE THERMAL Where:
SPECIFICATIONS T3, Ta Tcase = Junction, Ambient, and Case Temperature
The Am5486 microprocessor is specified for operation 8¢, 03a = Junction-to-Case and Junction-to-Ambient
when Tcage (the case temperature) is within the range Thermal Resistance, respectively
of 0°C to +55°C or +85°C. Tase Can be measured in P = Maximum Power Consumption

any environment to determine whether the Am5y486 mi-
croprocessor is within specified operating range. The
case temperature should be measured at the center of
the top surface opposite the pins.

The ambient temperature (T,) is guaranteed if Toage IS
notviolated. The ambienttemperature can be calculated
from 0, and 6,, and from the following equations:

T3=Tease+ (P * 60)
Ta=T;— (P60
Tease = Ta+ (P *[6;a — 65c])

The values for 0,, and 6, are given in Table 21 for the
1.75 sq. in., 168-pin, ceramic PGA. For the 208-pin
SQFP plastic package, 6;, = 14.0 and 6, = 1.5.

Table 22 shows the T, allowable (without exceeding
Tcase) at various airflows and Tage Values for the PGA
package. Note that T, is greatly improved by attaching
a heat sink to the package. P (the maximum power con-
sumption) is calculated by using a maximum I value
of 931 mA at 3.3 V. Table 23 shows the T, allowable
(without exceeding Tqage) for the SQFP package using
a maximum | value of 931 mA at 3.3 V.

Table 21. Thermal Resistance (°C/W) 8,c and 0,, for the Am5 «86 CPU in 168-Pin PGA Package

) 0,5 vs. Airflow-Linear ft/min. (m/s)
Cooling 0
Mechanism e 0 200 400 600 800 1000
0) (1.01) (2.03) (3.04) (4.06) (5.07)

No Heat Sink 1.5 16.5 14.0 12.0 10.5 9.5 9.0

Heat Sink* 2.0 12.0 7.0 5.0 4.0 3.5 3.25

Heat Sink* and fan 2.0 5.0 4.6 4.2 3.8 3.5 3.25

Note:
*0.350" high unidirectional heat sink (Al alloy 6063-T5, 40 mil fin width, 155 mil center-to-center fin spacing)
Table 22. Maximum T , at Various Airflows in °C
Airflow-Linear ft/min. (m/sec)
Ta by Cooling Type | Clock 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)
T, without Heat Sink 55°C 133 MHz | 8.9°C 16.6°C 22.7°C 27.3°C 30.4°C 32.0°C
T with Heat Sink 55°C 133 MHz | 24.3°C 39.6°C 45.8°C 48.9°C 50.4°C 51.2°C
T with Heat Sink and fan 55°C 133 MHz 45.8°C 47.0°C 48.2°C 49.,5°C 50.4°C 51.2°C
T, without Heat Sink 85°C 133 MHz 38.9°C 46.6°C 52.7°C 57.3°C 60.4°C 62.0°C
T, with Heat Sink 85°C 133 MHz | 54.3°C 69.6°C 75.8°C 78.9°C 80.4°C 81.2°C
T, with Heat Sinkand fan | 85°C 133 MHz | 75.8°C 77.0°C 78.2°C 79.5°C 80.4°C 81.2°C
Table 23. Maximum T , for SQFP Package by Clock Frequency
TCASE Clock TA
85°C 133 MHz 46.6°C
Amb5y86 Microprocessor 65

l"l AMD

PRELIMINARY
13 PHYSICAL DIMENSIONS
168-Pin PGA
< 1.735 R
Index | 1.765
Corner 1.595 R
1.605
T‘@@@@@@@@@@@@@@@@@\
CXoJCICICICICICICICICICICICCICIC,
OCPHOPOPOPOOOOOOOOOO®O
@O0O
@O0O @O0O
1505 | @ © © @O0O
1605 | © @ © @O
@O0O @O0O
T2 1 P06 ©O®
@O0O @O0O
@O0O @O0O
@O0O @O0O
@O0O @O0O
@PO0PPOPOOOOOOOOOO®O
CXoJCICICICICICICICICICICICCICIC,
L\©©©©©©©©@©©©©©©©©/
Bottom View (Pins Facing Up)
Notes:

1. All measurements are in inches.

2. Not to scale. For reference only.

3. BSC is an ANSI standard for Basic Space Centering.

Base Plane —
Seating Plane —»

—a

L
0.017 _l_
0.020
0.090
0.110
fe—>

0.025
0.045

0.105
0.125

Side View

0.140
0.180

0.110
0.140

66

Amb5y86 Microprocessor

AMD l"l

PRELIMINARY
208-Pin SQFP
30.40
30.80
27.90
_ 28.10
Pin 208 —\ 25.50 N
\ REF Va Pin 156
|:|:|://Q~¥ e
o — Pin 11.D. —T T
o —T 1
o —T 1
o —TT1
o T
o T 2550
o T REF
- — T 11 27.90
o T 1 28.10
o T 1 30.40
o —TT1 30.80
o T
o T
o T
o T
o —T T
o T
/:I:I: I
N /4
hkkRLGEEEERR L L
Pin 104
Top View
—a] pa— 0.50
BASIC
i i
3.25 / 3.70
3.45 Binininininiinimininininininininininin Max.
%95 . H H W H H H R R H W HH Seating
in ’ _—| |—_0-50 * Plane
0.75
Side View
Notes:

1. All measurements are in millimeters unless otherwise noted.
2. Not to scale. For reference only.

Trademarks

AMD, Am386, and Am486 are registered trademarks and Am5y86 is a trademark of Advanced Micro Devices, Inc.
FusionPC is a service mark of Advanced Micro Devices, Inc.
Microsoft and Windows are registered trademarks of Microsoft Corp.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Amb5y86 Microprocessor

67

