AN5693K

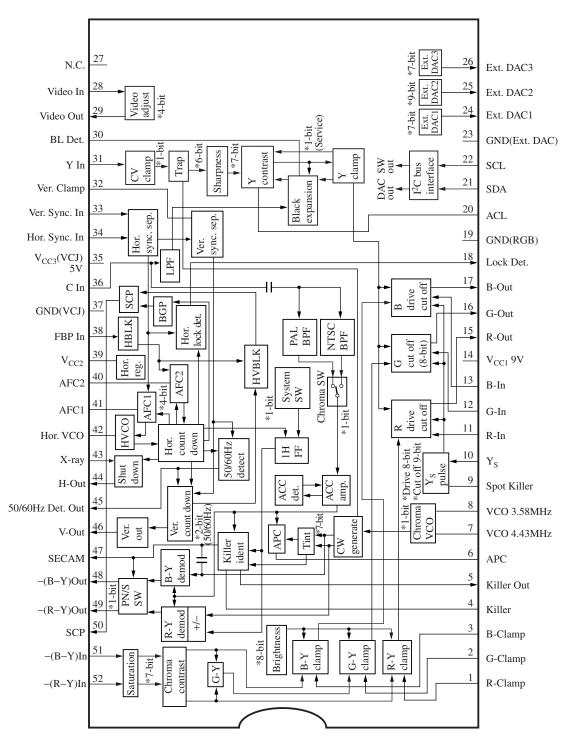
Luminance, chroma and sync. signals processing IC (with built-in I²C-bus interface) for PAL/NTSC color-TV

Overview

The AN5693K is an IC that processes PAL-and NTSC-compatible video, chroma, RGB and sync. signals.

Features

- Built-in I²C-bus control interface.
- SECAM-compatible together with the AN5637 SECAM signal processing IC.


Applications

• TV (Multi-system compatible)

Note) The package of this product will be changed to lead-free type (SDIP052-P-0600F). See the new package dimensions section later of this datasheet.

Block Diagram

Pin Descriptions

Pin No.	Description	Pin No.	Description
1	(R–Y)Clamp	27	N.C.
2	(G–Y)Clamp	28	Video Level Adjust Input
3	(B–Y)Clamp	29	Video Level Adjust Output
4	Killer Filter	30	Black Level Det/Blank Off SW
5	Killer Output	31	Y Input
6	Chroma APC Filter	32	Ver. Sync. Clamp
7	Chroma VCO 4.43 MHz	33	Ver. Sync. Input
8	Chroma VCO 3.58 MHz	34	Hor. Sync. Input
9	Spot Killer	35	V _{CC3} (Chroma/Jungle/DAC)
10	Y _S Input(Fast Blanking)	36	Chroma Input/Black Exp. Start
11	External R Input	37	GND(Video/Chroma/Jungle)
12	External G Input	38	FBP Input
13	External B Input	39	V _{CC2} (Hor. Stability Supply)
14	V _{CC1}	40	Hor. AFC 2 Filter
15	R Output	41	Hor. AFC 1 Filter
16	G Output	42	Hor. VCO(32 f _H)
17	B Output	43	X-Ray Protection Input
18	Hor. Lock Detect	44	Hor.Pulse Output
19	GND(RGB/I ² C/DAC)	45	Ver. 50/60 Hz Detect Output
20	ACL	46	Ver. Pulse Output
21	SDA	47	SECAM Interface/CW Output
22	SCL	48	–(B–Y)Output
23	GND(EXT DAC)	49	–(R–Y)Output
24	External DAC 1 DC	50	Sandcastle Pulse Output
25	External DAC 2 DC	51	–(B–Y)Input
26	External DAC 3 DC	52	–(R–Y)Input

Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit
Power supply voltage	V _{CC}	V _{CC1} (14)	10.5	V
		V _{CC3} (35)	6.0	
Power supply current	I _{CC}	I ₁₄	77	mA
		I ₃₅	119	
		I ₃₉	27	
Power dissipation *2	P _D	1 372		mW
Operating ambient temperature *1	T _{opr}	-20 to +70		°C
Storage temperature *1	T _{stg}	-55 to +150)	°C

Note) *1: Except for the operating ambient temperature, and storage temperature, all ratings are for $T_a = 25^{\circ}C$.

*2: The power dissipation shown is the value for $T_a = 70^{\circ}$ C. (Refer to "Technical Information")

Parameter	Symbol	Range	Unit
Operating supply voltage range	V _{CC1}	8.1 to 9.9	V
	V _{CC3}	4.5 to 5.5	
Operating supply pin voltage	V ₅	0 to 6	V
	V ₉	0 to V ₁₄	
	V ₁₀	0 to 6	
	V ₁₁	0 to 6	
	V ₁₂	0 to 6	
	V ₁₃	0 to 6	
	V ₂₁	0 to 6	
	V ₂₂	0 to 6	
	V ₂₄	0 to V_{14}	
	V ₂₅	0 to V_{14}	
	V ₃₆	0 to V ₁₄	
	V ₃₈	0 to V ₄₇	
	V ₄₃	0 to 2	
	V ₄₅	0 to 6	
	V ₄₇	0 to V ₁₄	

Recommended Operating Range

Note) Do not apply external currents or voltage to any pins not specifically mentioned.

For ciicuit currents, '+' denotes current flowing into the IC, and '-' denotes current flowing out of the IC.

Recommended Operating Range

Parameter	Symbol	Range	Unit
Operating supply circuit current	I ₃₉	10 to 25	mA
	I ₁₅	-6.0 to $+0.6$	
	I ₁₆	-6.0 to $+0.6$	
	I ₁₇	-6.0 to $+0.6$	
	I ₂₈	-0.3 to $+0.1$	
	I ₂₉	-2.4 to $+0.8$	
	I ₃₃	-0.8 to $+0.1$	
	I ₃₄	-0.8 to $+0.1$	
	I ₄₄	-6.4 to $+0.1$	
	I ₄₆	-0.8 to $+0.1$	
	I ₄₇	-0.3 to $+0.1$	

Note) Do not apply external currents or voltage to any pins not specifically mentioned.

For ciicuit currents, '+' denotes current flowing into the IC, and '-' denotes current flowing out of the IC.

Electrical Characteristics at $T_a = 25^{\circ}C$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Power supply DAC dat	a is standa	rd.				
Supply current 1	I ₁₄	Current when $V_{14} = 9 V$	38	48	58	mA
Supply current 2	I ₃₅	Current when $V_{35} = 5 V$	48	60	72	mA
Steady state supply voltage	V ₃₉	When pin 39 current I = 15 mA, pin 39 voltage	5.8	6.5	7.2	V
Steady state supply Current	I ₃₉	Current when $V_{39} = 5 V$	2	5	7	mA
Steady state supply input resistance	R ₃₉	DC measurement input resistance when $I_{39} = 10 \text{ mA to } 25 \text{ mA}$	1	5	10	Ω
Interface						
Video adjust gain	V _{PO}	DC measurement 20 log $\frac{\text{output (0A = F8)}}{\text{output (0A = 08)}}$	5	6	7	dB
Video adjust output resistance	R _{O29}	DC measurement	70	120	170	Ω
External DAC 1 DC voltage (max.)	V _{EXT1max}	Pin 24 DC voltage when DAC 0C = 00 DC measurement	3.10	3.40	3.70	V
External DAC 1 DC voltage (min.)	V _{EXT1min}	Pin 24 DC voltage when DAC 0C = 7F DC measurement	2.10	2.40	2.70	V
External DAC 2 DC voltage (max.)	V _{EXT2max}	Pin 25 DC voltage DAC 0B = 00, 04D7 = 0 DC measurement	7.8	8.1	8.7	V
External DAC 2 DC voltage (min.)	V _{EXT2min}	Pin 25 DC voltage DAC 0B = FF, 04D7 = 1 DC measurement	0.1	0.8	1.0	v

Electrical Characteristics at $T_a = 25^{\circ}C$ (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Interface (continued)						
External DAC 3 DC voltage (max.)	V _{EXT3max}	Pin 26 DC voltage when DAC 0D = 7F DC measurement	5.50	6.00	6.50	V
External DAC 3 DC voltage (min.)	V _{EXT3min}	Pin 26 DC voltage when DAC 0D = 00 DC measurement	0.90	1.00	1.15	V
External DAC 1 maximum output current	I _{EXT1max}	Pin 24 DC current when DAC 0C = 7F DC measurement	200			μA
External DAC 3 maximum output current	I _{EXT3max}	Pin 26 DC current when DAC 0D = 7F DC measurement	1.0			mA
Video signal processing	Input: (0.6 V_{PP} ($V_{WB} = 0.42 V_{0P}$ stair-step) at G-out				
Video output (typ.)	V _{YO}	DAC 03 = 40(typ.),(Contrast)	1.65	2.10	2.55	V _{PP}
Video output (max.)	V _{YOmax}	DAC 03 = 7F(max.),(Contrast)	3.60	4.50	5.35	V _{PP}
Video output (min.)	V _{YOmin}	DAC 03 = 00(min.),(Contrast)	0.07	0.25	0.50	V _{PP}
Contrast variable range	Y _{Cmax/min}	DAC 03 = 7F,DAC 03 = 00	20	25	33	dB
Video frequency characteristics	f _{YC}	f = 0.2 MHz as reference to -3 dB. DAC 0E D1 = 1,DAC 04 = 00(Sharp)	5.5	6.8		MHz
Sharpness variable range	Y _{Smax/min}	f = 3.8 MHz,DAC 0E D1 = 1 Sharp : (04 3F)/(04 00)	9	13	17	dB
Pedestal level (typ.)	V _{PED}	DAC 02 = 80(typ.),(Brightness)	1.9	2.5	3.1	V
Pedestal variable range	ΔV_{PED}	Difference between DAC 02 = 00 & FF (Brightness)	2.0	2.6	3.2	V
Brightness control sensitivity	ΔV_{BRT}	Average variable range of DAC $02 = 60 \& A0$	8	11	14	mV/step
Video input clamp voltage	V _{YCLP}	Pin 31 clamp voltage	3.2	3.7	4.2	V
ACL sensitivity	ACL	When $V_{20} = 3.0 \text{ V} - 3.5 \text{ V} 2$ times of Y-out increase	2.1	2.7	3.2	V/V
Blanking off threshold voltage	V _{BOFF}	Reduse pin 30 voltage; the voltage when blanking is off	0.3	0.5	0.9	V
Blanking level	V _{YBL}	Blanking pulse DC voltage.	0.5	1.0	1.5	V
DC transmission quantity	T _{DC}	APL : 10% to 90%,TDC TDC $\frac{(\Delta AC - \Delta DC) 100\%}{\Delta AC}$	9	100	110	%
Video input clamp current	I _{YCLP}	DC measurement IC : internal sink current	8	13	18	μΑ
ACL start point	V _{ACL}	ACL pin 20 voltage reduces from 5 V until output is lesser by 10%	3.4	3.7	4.0	V

Electrical Characteristics at T _a	= 25°C (continued)
--	--------------------

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Color signal processing	All tests	on: Burst 300 mV _{PP} (PAL), typ.: B-out				
Color difference output (typ.)	V _{COtyp}	Input: Color bar DAC $00 = 40(typ.)$, DAC $03 = 40(typ.)$	2.6	3.3	4.0	V _{PP}
Color difference output (max.)	V _{COmax}	Input: Color bar DAC $00 = 7F$, DAC $03 = 40$	2.3	3.0		V _{OP}
Color difference output (min.)	V _{COmin}	Input: Color bar DAC 00 = 00, DAC 03 =40	0		100	mV _{PP}
Chroma contrast variable range	C _{Cmax/min}	DAC 00 = 40,DAC 03 = 7F,DAC 03 = 00	20	25	33	dB
ACC.characteristics 1	ACC1	Input: Rainbow Burst increase from 300 mV _{PP} \rightarrow 600 mV _{PP}	0.9	1.0	1.2	Times
ACC.characteristics 2	ACC2	Input: Rainbow Burst decrease from 300 mV _{PP} \rightarrow 60 mV _{PP}	0.7	1.0	1.1	Times
NTSC tint centre	$\Delta \theta_{\rm C}$	Difference between DAC $01 = 40$ & when tint is centre	-13	0	13	Step
NTSC tint adjustable range 1	$\Delta \theta_1$	Input: Rainbow, DAC 01 = 7F(Tint)	30	50	65	Deg
NTSC tint adjustable range 2	$\Delta \theta_2$	Input: Rainbow, DAC 01 = 00(Tint)	-65	-50	-30	Deg
Demodulation output ratio (R) PAL,NTSC	R/B	Input: Rainbow Ratio of R-out/B-out	0.71	0.83	0.95	Times
Demodulation output ratio (G) PAL,NTSC	G/B	Input: Rainbow Ratio of G-out/B-out	0.31	0.37	0.43	Times
Color difference output angle (R) PAL,NTSC	∠R	Input: Rainbow	78	90	102	Deg
Color difference output angle (G) PAL,NTSC	∠G	Input: Rainbow	224	236	248	Deg
Color killer tolerance (PAL)	V _{KILLP}	Input: Color bar, 0 dB = 300 mV _{PP} Attenuate input level	-57	-44	-34	dB
Color killer tolerance (NTSC)	V _{KILLN}	Input: Color bar, $0 \text{ dB} = 300 \text{ mV}_{PP}$ Attenuate input level	-57	-44	-34	dB
APC pull-in range (H) PAL,NTSC	f _{CPH}	Input: Color bar High side pull-in range	450	900		Hz
APC pull-in range (L) PAL,NTSC	f _{CPL}	Input: Color bar Low side pull-in range		-900	- 450	Hz
Color killer detector output voltage (Color)	V _{KC}	Voltage at pin 5 when chroma signal is inputed	4.5	5.0		V
Color killer detector output voltage (B/W)	V _{KBW}	Voltage at pin 5 when no chroma signal is inputed	0	0.1	0.5	V

Electrical Characteristics at	$T_a = 25^{\circ}C$	(continued)
-------------------------------	---------------------	-------------

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Color signal processing (co	ntinued)	All tests on: Burst 300 mV _{PP} (PAL), ty	р.: В-оі	ıt	1	!
Demodulation output–(B–Y) PAL,NTSC	V _{DB}	Input: Color bar (NTSC: Adjust to tint centre)Measure pin 48	555	695	835	mV _{PP}
Demodulation output–(R–Y) PAL,NTSC	V _{DR}	Input: Color bar (NTSC: Adjust to tint centre)Measure pin 49	430	540	650	mV _{PP}
Demodulation output angle ∠B PAL,NTSC	∠R _{DB}	Input: Rainbow Phase difference of B–Y axis	-5	0	5	Deg
Demodulation output angle $\angle R$ PAL,NTSC	$\angle R_{DR}$	Input: Rainbow Phase difference of B–Y and R–Y axis	85	90	95	Deg
CW output level(4.43 MHz)	V _{CWP}	AC component at pin 47 when VCO is at 4.43 MHz	250	300	350	mV _{PP}
CW output level(3.58 MHz)	V _{CWN}	AC component at pin 47 when VCO is at 3.58 MHz		0	50	mV _{PP}
SECAM output CW period	T _{CW}	Period of CW is outputed when in SECAM	1.31	1.41	1.51	ms
SECAM detector current	I _{SECAM}	Minimum current from pin 47 when SECAM is detected	50	100	150	μs
PAL/NTSC output DC voltage	V _{47PN}	PAL/NTSC output DC voltage at pin 47	0.80	1.30	1.65	V
SECAM output DC voltage	V _{47S}	SECAM output DC voltage at pin 47	4.1	4.6	5.1	V
Demodulation output impedance (PAL/NTSC) -(R-Y), -(B-Y)	R _{O48,49PN}	Pin impadance of pin 48, pin 49 in PAL/ NTSC mode	390	480	570	Ω
Demodulation output impedance (SECAM) -(R-Y), -(B-Y)	R _{O48,49S}	Pin impadance of pin 48, pin 49 in SECAM mode	100	_		kΩ
RGB processing DAC	data standa	ard				
Pedestal difference voltage	ΔV_{IPL}	R,G,B out pedestal difference voltage	0		0.3	V
Brightness voltage tracking	ΔV_{BL}	DAC 02 = 40 to C0 (Brightness). Ratio of variable level	0.9	1.0	1.1	Times
Video voltage gain ratio	ΔG_{YC}	R,B out output ratio with G-out	0.8	1.0	1.2	Times
Video voltage gain tracking	ΔT_{CONT}	DAC $03 = 20$ to 60 ratio (contrast) of gain	0.9	1.0	1.1	Times Times
Driver control characteristics	G _{DV}	R,B out AC adj. amount Driver DAC 08 = 00 to FF Driver DAC 09 = 00 to FF	5.3	6.3	7.3	dB
Cut-off control characteristics	V _{CUTOFF}	R,G,B output DC cut off DAC range from min.to max.	1.9	2.4	2.9	V
Y _s threshold voltage	V _{YS}	Smallest level when Y _S is on	0.7	1.0	1.3	V

Electrical Characteristics at $T_a = 25^{\circ}C$ (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
RGB processing (continued	d) DA	C data standard				
External RGB DC Voltage	V _{EPL}	Y _S is on	1.7	2.3	2.9	V
External RGB pedestal difference voltage(R/B)(G/B)	ΔV_{EPL}	Y _S is on	0		250	mV
Internal/External pedestal difference voltage	$\Delta V_{PL/IE}$	Internal-External	50	200	400	mV
External RGB output Voltage	V _{ERGB}	Input 3 V_{PP} , DAC 03 = 7F(Contrast)	4.3	5.4	6.5	V _{PP}
External RGB output difference voltage	ΔV_{ERGB}	Input 3 V_{PP} , DAC 03 = 7F(Contrast)	- 0.6	0	+ 0.6	v
External RGB contrast control characteristics	E _{Cmax/min}	DAC 03 = 7F, DAC 03 = 00	10	13	16	dB
External RGB frequency characteristics	f _{RGBC}	Input 0.2 V_{PP} , DC = 1 V	8	12		MHz
Synchronizing signal proce	ssing		1	1		
Horizontal output free run frequency	f _{HO}	No input signal The frequency at pin 44	15.33	15.63	15.93	kHz
Horizontal output pulse duty	$ au_{HO}$	Horizontal output pulse's high level's duty	31	37	43	%
Horizontal output pull-in range	f _{HP}	Horizontal sync. sep. freq. pull-in approach- ing 15.625 kHz	± 500	± 650		Hz
Vertical free run frequency (PAL)	f _{VO-P}	Forced 50 Hz mode, DAC $0E-D2 = 1$ D3 = 0, No sync.signal input	48	50	52	Hz
Vertical free run frequency (NTSC)	f _{VO-N}	Forced 60 Hz mode, DAC $0E-D2 = 1$ D3 = 1, No sync.signal input	58	60	62	Hz
Vertical output pulse width NTSC,PAL	$\tau_{\rm VO}$	Hor. & Ver.sync. condition, the pulse width at pin 46	9	10	11	1/fH
Vertical pull-in range (PAL)	f _{VPP}	$f_{\rm H} = 15.625$ kHz, Forced 50 Hz mode	46		54	Hz
Vertical pull-in range (NTSC)	f _{VPN}	$f_{\rm H} = 15.75$ kHz, Forced 60 Hz mode	56		64	Hz
Horizontal output voltage (H)	V_{44H}	Horizontal output pulse's high level's DC voltage	3.2	3.5	3.8	V
Horizontal output voltage (L)	V _{44L}	Horizontal output pulse's low level's DC voltage	0		0.3	V
Vertical output voltage (H)	V _{46H}	Vertical output pulse's high level's DC voltage	3.9	4.2	4.5	V
Vertical output voltage (L)	V _{46L}	Vertical output pulse's low level's DC voltage	0		0.3	V
Screen centre variable range	ΔT_{HC}	Variable amount of phase between H_{SYNC} & H_{OUT} DAC 0A = 80 to 8F	2.6	3.2	4.4	μs

Electrical Characteristics at $T_a = 25^{\circ}C$ (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Synchronizing signal proce	ssing (co	ntinued)				
Shut down operating	V _{43L}	Pin 43 minimum voltage when H-out does not appear	0.60	0.68	0.76	V
Vertical frequency detection operation (50 Hz)	f ₅₀	Vertical input freq.when the DC level at pin $45 = "L" (< 0.5 V)$	47		55	Hz
Vertical frequency detection operation (60 Hz)	f ₆₀	Vertical input freq. when the DC level at pin 45 = "H"(> 4.5 V)	57		63	Hz
Sync. separation input clamp voltage (Vertical)	V ₃₃	V ₃₃ clamp voltage	1.0	1.3	1.6	V
Sync. separation input clamp voltage (Horizontal)	V ₃₄	V ₃₄ clamp voltage	1.0	1.3	1.6	V
Horizontal output start voltage	V _{fHS}	Minimum V_{38} when horizontal output is above 1 V_{PP} , fo > 10 kHz	3.4	4.2	5.0	V
I ² C interface						
Sinking current at ACK	I _{ACK}	When ACK, pin21 pin current with 2.2 k Ω pull-up to 5 V	1.8	2.5	5.0	mA
SCL,SDA signal input high level	V _{IHI}	_	3.1		5.0	V
SCL,SDA signal input low level	V _{ILO}	_	0		0.9	V
Input possible maximum frequency	f _{Imax}	_	100			Kbit/s

• Reference data for design

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Video signal processing	Video signal processing Input: 0.6 V_{PP} ($V_{WB} = 0.42 V_{0P}$ stair-step) at G-out					
Y signal delay time	t _{DL}	Measure output's delay time with input (PAL = 4.43 MHz)		690	760	ns
Black level correction 1	V _{BLC1}	All black input. Find the diff.of G-out when pin 30 is 9 V & open		0	+100	mV
Black level correction 2	V _{BLC2}	All black input. Find the diff.of G-out when pin 30 is 3 V & 9 V	500	800	1100	mV
Black level correction 3	V _{BLC3}	Input: About 20 IRE the diff.of G-out when pin 30 is open & 9 V		300	500	mV
Contrast variation with sharpness	ΔV_{CS}	Y-out output level difference when sharpness = max. to min.		0	+300	mV
Brightness variation with sharpness	ΔV_{BS}	Pedestal DC level difference when sharpness = max. to min.	-250	0	+250	mV

- \blacksquare Electrical Characteristics at T_a = 25°C (continued)
- Reference data for design (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Video signal processing (c	ontinued)	Input: 0.6 V_{PP} ($V_{WB} = 0.42 V_{0P}$ stair-s	step) at (G-out		
Y input dynamic range	V _{Imax}	Contrast DAC 03 = 40 Measure at video input Pin31	1.0	1.7		V _{PP}
Y S/N ratio	SNY	Contrast DAC 03 = 7 F	51	56		dB
Black level expansion start point	V _{BLS}	Start point when $V_{36} = 4.5 V$	37	42	47	IRE
Trap on/off gain difference	ΔG_{TRAP}	Trap on/off ratio	-1	0	+1	dB
Trap on/off delay time variation	Δt_{TRAP}	Trap on/off	480	530	580	ns
Trap frequency tolerance	Δf_{TRAP}	When chroma input is 4.43 MHz, trap centre frequency from 4.43 M	-70	0	+70	kHz
Trap attenuation 4.43 MHz	ATT _{TRAPP}	When chroma input is 4.43 MHz, 4.43 MHz component attenuation	26	30		dB
Trap attenuation 3.58 MHz	ATT _{trapn}	When chroma input is 3.58 MHz, 3.58 MHz component attenuation	26	30		dB
Trap automatic adjustment range	f _{TRAP}	VCO frequency of $\Delta f_{\text{TRAP}} \le 70 \text{ kHz}$	3		5	MHz
Trap set frequency	f _{ST}	DAC 0 E–D6 = 1 Trap's frequency	4.7	5.5	6.3	MHz
Video signal output V _{CC} variation	$\Delta V_{Y}/V$	$V_{CC1} = 9 V (\pm 10\%)$	0	100	200	mV/V
Video signal output temperature variation	$\Delta V_{Y}/T$	$T_a = -20^{\circ}C$ to $+70^{\circ}C$	0	5	10	%
PAL/NTSC delay time difference	$\Delta t_{P/N}$	Trap on(NTSC-PAL)	-10	10	30	ns
Color signal processing	All tests	on: Burst 300 mV _{PP} (PAL)standard is B-out				1
Demodulation output residue carrier	V _{CAR1}	Pin 48, pin 49 output's 2nd harmonics	0		30	mV
Color difference output residue carrier	V _{CAR2}	Pin 15, pin 16, pin 17 output's 2nd harmonics	0	_	50	mV
VCO free run frequency (PAL)	f _{CP}	Compare with standard $f = 4.433619 \text{ MHz}$	-300	0	+300	Hz
VCO free run frequency (NTSC)	f _{CN}	Compare with standard $f = 3.579545$ MHz	-300	0	+300	Hz
VCO V_{CC} variation	$\frac{\Delta f_C}{\overline{V_{CC}}}$	$V_{CC1} = 9 V (\pm 10\%)$ $V_{CC3} = 5 V (\pm 10\%)$	-300	0	+300	Hz
Phase hold characteristic (PAL)	$\Delta \theta_P$	Tint change when $\Delta f_{\rm C} = -300$ Hz to +300 Hz	0	2	5	deg 100 Hz

\blacksquare Electrical Characteristics at T_a = 25°C (continued)

• Reference data for design (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Color signal processing (co	ntinued)	All tests on: Burst 300 mV _{PP} (PAL)stan	dard is	B-out		
Phase hold characteristic (NTSC)	$\Delta \theta_N$	Tint change when $\Delta f_{\rm C} = -300 \text{ Hz to } +300 \text{ Hz}$	0	2	5	deg 100 Hz
Color difference output PAL/NTSC ratio	R _{P/N}	R out PAL/R out NTSC	0.8	1.0	1.2	Times
Line crawling	ΔV_{PAL}	Pin49: –(R–Y)out every 1 H output difference in voltage	0	_	50	mV
Color difference output frequency characteristics	f _{CC}	Bandwidth when gain reduces by 3 dB		1.0		MHz
Chroma BPF characteristics (PAL)	BPF _P	f = 4.43 MHz - 2.00 MHz output level difference		32		dB
Chroma BPF characteristics (NTSC)	BPF _N	f = 3.58 MHz to2.00 MHz output level difference		22		dB
Color difference output V _{CC} variation	$\Delta V_{\rm C}/{\rm V}$	$V_{CC1} = 9 V (\pm 10\%)$ $V_{CC3} = 5 V (\pm 10\%)$		± 10	± 15	%
Color difference output Temperature variation	$\Delta V_{\rm C}/{\rm T}$	Temperature: -20°C to +70°C		± 10	± 15	%
Color variation to brightness variation	V _{BC}	When color: max.to min. the difference in pedestal DC	- 250	0	+ 250	mV
Color to brightness variation voltage	ΔV_{BC}	RGB output variation voltage difference	0		20	mV
RGB processing				I		1
(C–Y)/Y ratio	R _{C/Y}	Input: Color bar. B-out, contrast: typ. Color: DAC 00 = 60	0.9	1.2	1.5	$\frac{V_{OP}}{V_{PP}}$
C-Y,Y delay difference	$\Delta t_{C/Y}$	Input: Color bar, B-out Green = magenta delay	-100	0	+100	ns
Y _S switching speed	\mathbf{f}_{YS}	External input 3 V output level when at -3 dB frequency	7	11		MHz
Exeternal RGB input dynamic range	V _{DEXT}	DAC 03 = 7 F(Contrast : max.)	2.0	2.5	3.2	V _{OP}
Internal/External RGB crosstalk	CT _{RGB}	$f = 1 \text{ MHz } 1 \text{ V}_{PP}$ The crosstalk level when $Y_S = 5 \text{ V}$		-60	-50	dB
Spot killer operation	V _{SPK}	Voltage at pin 9 from $V_9 = 9$ V reduces until spot killer is on	7.4	7.8	8.2	v
Contrast variation to brightness variation	V _{BAC}	When contrast is max.to min., the diff. in pedestal DC	-250	0	+250	mV

- \blacksquare Electrical Characteristics at T_a = 25°C (continued)
- Reference data for design (continued)
 - Note) The characteristic listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
RGB processing (continued	(k					
Contrast to brightness variation voltage	ΔV_{BAC}	RGB output variation voltage difference	0		20	mV
RGB output color/BW DC difference voltage	ΔV_{CBW}	Difference in pedestal voltage between burst on/off	- 60	0	+ 60	mV
Pedestal level V _{CC} variation	$\Delta V_{PL}/V$	Pedestal level change when $V_{CC1} = 9 V (\pm 10\%)$	0	200	400	mV/V
Pedestal level temperature variation	$\Delta V_{PL}/T$	Pedestal level change when temperature is $-20^{\circ}C \sim +70^{\circ}C$	-2.6	-2.2	-1.8	mV/°C
Pedestal level 2	V _{PD2}	The pedestal level when G cutoff DAC 05 = 18	2.1	2.7	3.3	V
Synchoronizing signal proc	essing					
Lock detector output voltage	V _{LD}	Pin18 DC voltage when horizonal AFC is locked	5.7	6.3	6.9	V
Lock detector charging current	I_{LD}	DC measurement	± 0.6	± 0.8	±1.1	mA
FBP input slice level (RGB)	V _{FBP}	Minimum voltage at which blacking of RGB outputs happens	0.40	0.75	1.10	V
FBP input slice level (AFC2)	V _{FBPH}	Minimum voltage at which AFC 2 operates	1.5	1.9	2.3	V
Horizontal AFC μ	μ_{H}	Calculate from AFC current DC measurement	30	37	44	μA/μs
Horizontal VCO-β curve	$\beta_{\rm H}$	Slope of β curve near to f = 15.7 kHz	1.4	1.9	2.4	Hz/mV
Burst gate pulse position NTSC,PAL	P _{BGP}	When hor. AFC is on, hor. sync. rising edge to the BGP rising edge	0.2	0.4	0.6	μs
Burst gate pulse width (PAL)	W _{BGPP}	When hor. AFC is on, BGP's pulse width	3.4	4.0	4.6	μs
Burst gate pulse width (NTSC)	W _{BGPN}	When hor. AFC is on, BGP's pulse width	2.5	3.0	3.5	μs
Burst gate pulse output voltage	V_{BGP}	Pin50 DC voltage during BGP period	4.5	4.7	4.9	V
Horizontal blanking pulse output voltage	V _{HBLK}	Pin50 DC voltage during H-blanking period	2.1	2.4	2.7	V
Vertical blanking pulse output voltage	V _{VBLK}	Pin50 DC voltage during V-blanking period	2.1	2.4	2.7	V
Vertical blanking pulse width (PAL)	W _{VP}	Pulse width when $f_H = 15.625 \text{ kHz}$	1.31	1.41	1.51	ms
Vertical blanking pulse width (NTSC)	W _{VN}	Pulse width when $f_H = 15.73 \text{ kHz}$	1.01	1.11	1.21	ms
FBP allowable range	T _{FBP}	delay from hor. output rising edge to FBP centre	12	—	19	μs

\blacksquare Electrical Characteristics at T_a = 25°C (continued)

• Reference data for design (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
I ² C interface						
Bus free before start	t _{BUF}		4.0			μs
Start condition set-up time	t _{SU,STA}	—				μs
Start condition hold time	t _{HD,STA}		4.0			μs
"L" period SCL, SDA	t _{LOW}	_	4.0	—		μs
"H" period SCL	t _{HIGH}		4.0	_	—	μs
Rise time SCL,SDA	t _r				1.0	μs
Fall time SCL,SDA	t _f	_	_	—	0.35	μs
Data set-up time (Write)	t _{SU,DAT}		0.25	_	—	μs
Data hold time (Write)	t _{HD,DAT}		0			μs
Acknowledge set-up time	t _{SU,ACK}	_			3.5	μs
Acknowledge hold time	t _{HD,ACK}	_	0			μs
Stop condition set-up time	t _{SU,STO}		4.0	—		μs
DAC						
4,6,7-bit DAC DNLE	L _{4,6,7}	1 LSB = {Data(max.)–Data(00)}/15(4-bit), 63(6-bit), 127(7-bit)	0.1	1.0	1.9	LSB Step
8-bit DAC DNLE	L ₈	1 LSB = {Data(FF)–Data(00)}/255(8-bit)	0.1	1.0	1.9	LSB Step
Cut off DAC overlap	ΔStep	The overlap between the two 8-bit sections of R,B cutoff & AFT	27	32	37	Step

Panasonic

- Electrical Characteristics at T_a = 25 °C (continued)
- Description of test circuits and test methods

1.Input signal

- (1) Video : 10 stairs waveform 0.6 $V_{PP}(V_{BW} = 0.42 V_{OP})$
- (2) Chroma : Color bar signal : Burst level 300 mV_{PP}
 - Rainbow signal : Burst level 300 mV_{PP}

(3) Synchronous : Horizontal, vertical synchronous signal input are 1.5 V_{PP} to 2.5 V_{PP}

2.I²C bus condition : (PAL)

Sub address	Data(H)
00	40
01	40
02	80
03	40
04	80
05	00
06	00
07	00
08	80
09	80
0A	88
0B	01
0C	40
0D	40
0E	01

Data(H)
Daia(II)
00 = 40
01 = 40
02 = 80
03 = 40
04 = 00
05, 07 = 00
06 = 00
08, 09 = 80
0A(upper byte) = 8*
0A(lower byte) = *8
0B = 01 (04 - D7 = 1)
0C = 40
0D = 40

■ Pin Equivalent Circuit

Pin No.	Equivalent circuit	Function	Status
1 2 3	C-Y C-Y 300 Ω Fin 1,2,3 300 Ω 7/7 0.068 μF 0.068 μF 150 μA Brightness control	 Pin1 : Color Difference Clamp Pin(R–Y) Pin2 : Color Difference Clamp Pin(G–Y) Pin3 : Color Difference Clamp Pin(B–Y) Input from Pin51, 52, the color difference signals are clamped according to brightness control voltage The clamp pulse uses internal clamp pulse 	DC about 7 V
4	Killer 3.3 V 4 det. 777 137 kΩ iv 1270 Ω iv 12.5 V BGP 777 9 V(V _{CC1}) 0.47 μF	 Killer Filter Pin : Killer detection circuit's filter pin (operate during BGP period) Below 2.8 V, killer is on(no color output) 	DC about 3.3 V
5	5 V (μ -com. V _{CC}) $33 k\Omega$ 175Ω $40 \mu A$ Killer 0 on Floating μ -com. Floating 777 Off	 Killer Output Pin : Killer detection circuits output pin Pin5 pull-up resistor, 33 kΩ, is connected to MICOM's V_{CC}. 	DC Killer on 0.2 V Killer off 5 V
6	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	APC Filter Pin : • APC detector circuit's filter pin (operate during BGP period) • As external resistor, R, becomes larger (pull in becomes easier. Interference by noise becomes easier) $f_C = \int_{V_6}^{\beta \text{ curve}} V_6$ • During SECAM mode, the 40 k Ω is shorted to stop APC circuit's operation	DC about 2.5 V

■ Pin Equivalent Circuit (continued)

Pin No.	Equivalent circuit	Function	Status
7 8	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 4.43 \text{ MHz} \\ \hline \\ 0 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 $	 Pin7 : Chroma Oscillator Pin(4.43 MHz) Pin8 : Chroma Oscillator Pin(3.58 MHz) At chroma oscillator pin, either 4.43 MHz or 3.58 MHz oscillation takes place Oscillation frequency switching is done by I²C bus, 0E-D0 bit When 0E-D0 =1, IP1, IP2 is on. 3.58 MHz is oscillating The PCB layout pattern between the pin and the resonator must be as short as possible 	$\begin{array}{c} AC\\ f = f_C\\ about \ 0.3 \ V_{PP} \end{array}$
9	$10 \text{ k}\Omega$ V_{CC1} $V_$	 Spot Killer Pin : When the set is power off, it is used for discharging the electric charge from CRT quicky When V_{CC1} reduces, RGB output pin's DC voltage rise 	DC about 9 V
10	From μ -com. $2.7 \text{ k}\Omega$ $30 \text{ k}\Omega$ 10μ A 10μ A	 Y_S Input Pin : The fast blanking pulse input pin is for the OSD Above 1 V_{OP} is on 	AC (Pulse)
11 12 13	Pin 11,12,13 2.7 kΩ From μ -com. $\frac{1}{27}$ $\frac{1}{27$	Pin11 : External R Input Pin Pin12 : External G Input Pin Pin13 : External B Input Pin • The external input pins are for the OSD • The output level changes linearly with the input level Output Output Contrast min. 2.5V (max.) Input • The Input's limiting voltage changes according to the contrast control level	AC (Pulse)

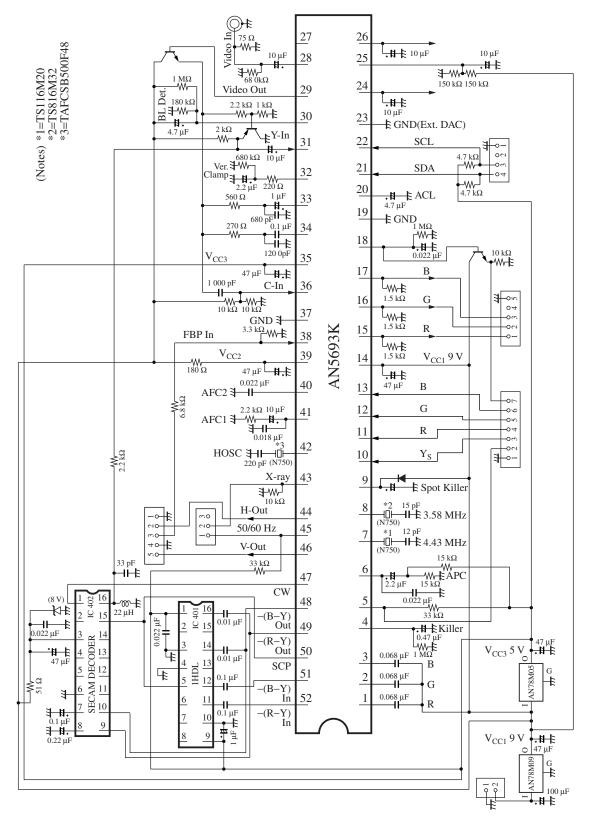
Pin No.	Equivalent circuit	Function	Status
14		V _{CC1} (typ. 9 V) : • IF circuit • Video circuit • RGB circuit	DC 9V
15 16 17	C out $130 \mu A$ 100Ω 100Ω 100Ω 16 16 16 50Ω 17 17 $500 \mu A$ 77	 Pin15 : R out Pin Pin16 : G out Pin Pin17 : B out Pin BLK level about 0.9 V Black(pedestal)level about 2.2 V If Pin30(Black level detection output pin)is 0 V, blanking is removed. 	AC
18	$\begin{array}{c} V_{CC2} \\ (V_{CC2}) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	 Horizontal Synchronous Detection Output Pin : The phase between horizontal synchronous signal and horizontal output pulse is detected When synchronising comes off, Pin18 voltage goes low When not synchronising,color control is minimum,and chroma output disappears In the case where Pin18 voltage is used by MICOM, impedance has to be taken care(Zo ≥ 1 MΩ is required) Pin 44 H-out Pin 34 H-sync. in H sync. period, Pin44 level is "H" : I₁ on "L" : I₂ on 	DC When synchronising about V _{CC2} -V _{SAT} When synchronising comes off about 0.3 V
19		GND : • RGB circuit • DAC I ² C circuit • IF circuit	

Pin No.	Equivalent circuit	Function	Status
20	$\begin{array}{c} & & & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & &$	 ACL Pin : When Pin20 DC voltage is externally decreased, contrast is limited 	DC about 3 V
21	$\begin{array}{c} 5V \\ (V_{CC3}) \\ \hline \\ 100 \text{ k}\Omega \\ \hline \\ 100 \text{ k}\Omega \\ \hline \\ 50 \mu\text{A} \\ \hline \\ 100 \text{ k}\Omega \\ \hline \\ 100 \mu\text{C}\Omega \\ \hline \\ 100 \mu\text$	I ² C BUS DATA Input Pin :	AC (Pulse)
22	$\begin{array}{c} 5 V \\ (V_{CC3}) \\ \hline \\ 100 k\Omega \\ \hline \\ 50 \mu A \\ 100 k\Omega \\ \hline \\ 50 \mu A \\ 100 k\Omega \\ \hline \\ 1.7 V \\ \hline \\ 777 \\ \hline \\ 1.7 V \\ \hline \\ \\ 1.7 V \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	I ² C BUS CLOCK Input Pin :	AC (Pulse)
23	—	GND : • External DAC circuit	
24	5 V 100 μA 150 Ω 40 kΩ	 External DAC 1 Pin : External DAC 1 voltage is adjustable by using I²C bus 	DC

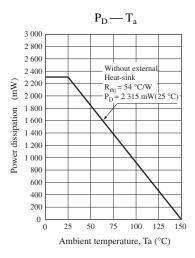
Pin No.	Equivalent circuit	Function	Status
25	9 V 1.1 kΩ 9 V 1.1 kΩ 9 V 9 V 1.1 kΩ 9 V 1.1 kΩ 1.1 kΩ 9 V 1.1 kΩ 1.1 kΩ </td <td> External DAC 2 Pin : External DAC 2 voltage is adjustable by using I²C bus through the change in DAC output current </td> <td>DC</td>	 External DAC 2 Pin : External DAC 2 voltage is adjustable by using I²C bus through the change in DAC output current 	DC
26	$\begin{array}{c} & 9 \text{ V} \\ \hline 500 \Omega \\ \hline 0 \text{ (V}_{\text{CC1}}) \\ \hline \\ & & $	 External DAC 3 Pin : External DAC 3 voltage is adjustable by using I²C bus 	DC
27		N.C. Pin	
28	50 μA \bigcirc 2.35 V \bigcirc 2.35 V \bigcirc 2.35 V \bigcirc 2.35 V \bigcirc 2.35 V \bigcirc 10 μF \bigcirc 680 kΩ \gtrsim 10 μF	 Video Input Pin : From VIF IC, the detected signal's (internal video signal)input pin Input by DC cut Standard input 1 V_{PP}(max.1.5 V_{PP}) 	AC 1 V _{PP} (composite) (composite) DC level about 1.6 V
29	75 μA	 Video Output Pin : Adjustable to 2 V_{PP} by I²C bus (use 0A upper 4-bit) 	AC 1.75 V _{PP}

Pin No.	Equivalent circuit	Function	Status
30	$\begin{array}{c} & 9 V \\ & & 0 \mu A \\ & & & 0 \nu CCC1 \\ & & & & 0 \nu CCC1 \\ & & & & & 0 \nu CCC1 \\ & & & & & 0 \nu CCC1 \\ & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & 0 \nu CCC1 \\ & & & & & & & 0 \nu CCC1 \\ & & & & & & & 0 \nu CCC1 \\ & & & & & & & & 0 \nu CCC1 \\ & & & & & & & & 0 \nu CCC1 \\ & & & & & & & & & & 0 \nu CCC1 \\ & & & & & & & & & & & & & & & & & & $	 Black level detection output pin blanking off switch pin : For black expansion circuit's black level detection output filter pin For removing the blanking period and holding the darkest Y level By changing the external resistor, R, the black level expansion sensitivity can be changed. When R is bigger, area of response is smaller To stop black expansion circuit, set Pin30 voltage to about V_{CC}(9 V) If Pin30 voltage is GND, blanking is off.(Black expansion is also off) 	DC abuot 5.1 V
31	$\begin{array}{c} & 9 \text{ V} \\ & (\text{V}_{\text{CC1}}) \\ & 47 \text{ k}\Omega \\ & (\text{V}_{\text{CC1}}) \\ & 4.3 \text{ V} \\ & 4.3 \text{ V} \\ & 1.8 \text{ k}\Omega \\ & 10 \mu\text{ A} \\ & 10 \mu\text{ A} \\ & 777 777 \end{array}$	 Video Input Pin : Video signal input pin (Composite video also allowable) Standard input 0.6 V_{PP} Sync. top is clamped to 3.5 V Video signal is inputed to low impedance inputs 	AC 0.6 V _{PP}
32	$\begin{array}{c} & 5 \\ & & 5 \\ & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	 Vertical Synchronous Signal Clamp Pin : This is the peak clamp pin for vertical synchronous signal separation The integration of the vertical synchronous signal is determined by the internal time constant, but the external time constant, R1, C1, is chosen according to the required trigger timing Using R1 > 200 kΩ R2 is the resistor which is used to control the emitter current 	AC f = fV

Pin No.	Equivalent circuit	Function	Status
33 34	$\begin{array}{c} 5 V \\ (V_{CC3}) \\ 16 k\Omega \\ 10 k\Omega$	 Pin33 : Vertical Sync. Separation Input Pin Pin34 : Horizontal Sync. Separation Input Pin Pin33, 34 internal circuits are similar Usually, vertical synchronous threshold is deeper than horizontal synchronous' threshold. Thus R_V > R_H R_H and C_H determine cutoff frequency at about 500 kHz R → big, threshold becomes deeper (Sync. compression is weaker). R → small, threshold becomes shallower (fluctuation becomes weaker due to vertical sag) Sync. top is clamped at 1.3 V 	AC 2 V _{PP}
35	_	V _{CC3} (typ.5V) : • For chroma and jungle circuit	DC 5 V
36	Chroma signal 1000 pF 9 V 12.5 pF 12.5 pF 12.5 pF 12.5 pF 12.5 pF 12.5 pF $15 k\Omega$ $15 k\Omega$ $15 k\Omega$ $15 k\Omega$ $15 k\Omega$ $1000 \mu A$ $1000 \mu A$ $10000 \mu A$ 1000	 Chroma Signal Input Pin Black Expansion Starting Point Adjustment Pin : Pin36 is chroma signal input pin and external DC voltage is applied to adjust the starting point of black expansion 	AC + DC Burst typ. 300 mV _{PP} DC typ. 4.5 V
37	_	GND : • For video,chroma and jungle circuit	DC 0 V
38	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	 FBP Input Pin : The FBP input pin is for horizontal blanking and AFC circuit Threshold level for HBLK : 0.7 V AFC : 1.9 V External DC 1.3 V must be applied to become all blanking Input voltage below 0 V is prohibited 	AC FBP


Pin No.	Equivalent circuit	Function	Status
39	V_{CC2} To hor. OSC $\downarrow yp. 15 \text{ mA}$ $47 \ \mu F $ $\downarrow TT$ $\downarrow TT$ $\downarrow Voltage$ $regulating$ $circuit$ $\downarrow TT$	Horizontal Steady State Supply Pin : • Steady state supply is used by horizontal circuit startup. Internal voltage regulating circuit is present V ₃₉ 6.5 V	DC 6.5 V
40	$2 \text{ k}\Omega 2 \text{ k}\Omega$ $2 \text{ k}\Omega 1 2 \text{ k}\Omega$ $4FC2$ $4et.$ $Circuit$ $From 40$ DAC $AFC2$ $AFC2$ $det.$ $1 \text{ k}\Omega 1 \text{ k}\Omega 1 \text{ position}$ 777	 Horizontal AFC 2 Filter Pin : FBP and IC internal pulse phase difference is compared. At Pin40, a capacitor is connected for charging and discharging this current The current from the picture centre position adjustment DAC establishes DC by chaging and discharging current Time difference from Hout to FBP-in depends on V₄₀ which changes the slice level of internal sawtooth waveform 	DC 1.5 V to 3.5 V
41	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	 Horizontal AFC 1 Filter Pin : Horizontal synchrous signal and IC internal pulse phase difference is compared. At Pin41, a capacitor is connected for charging and discharging current R1, R2, C1, C2, are lag-lead filter used by AFC 1 Horizontal β curve f_H Horizontal β curve V₄₁ 	DC typ. 4.3 V

Pin No.	Equivalent circuit	Function	Status
42	(V _{CC2}) (V _{CC}	 Horizontal Oscillator Pin : Oscillates by 32 × f_H = 500 kHz ceramic resonator Horizontal and vertical pulses are made by the IC internal count down circuit 	AC $f = 32 f_{H}$ (about 500 kHz)
43	present for N750 4.3 V 20 kΩ 20 kΩ $3 V4.3 V$ 20 kΩ 20 kΩ $3 V4.3 V$ $20 kΩ$ $3 V20 kΩ$ $7 Tocount down20 kΩ$	 Over Voltage Protection Input Pin : Input pin is used by X-ray protector circuit for over voltage By internal logic circuit, when H out pulse is low, shut down starts (Prevent damaging the horizontal drive transistor) 	DC usually 0 V
44	4.3 V $19 \text{ k}\Omega$ $10 \text{ k}\Omega$	Horizontal Pulse Output Pin : • Duty is about 37 %	AC (Pulse)
45	+5V(μ -com V _{CC}) \longrightarrow 5 V (V _{CC3}) $33 k\Omega$ 100 kΩ To μ -com 45	 Vertical Frequency Detection Output Pin : The output of the result of the internal counter of the vertical synchronous signal period f_V = 60 Hz : V45 is "H" = 50 Hz : V45 is "L" 	DC 0 V or 5 V


Pin No.	Equivalent circuit	Function	Status
46	$ \begin{array}{c} & 5 \\ & (V_{CC3}) \\ & 46 \\ & 46 \\ & 42 \\ & 0 \\ & 0 \\ & 77 \\ &$	Vertical Pulse Output Pin : • Nagative polarity pulse width is 10H	AC (Pulse)
47	$56.2 \text{ k}\Omega$ $12 \text{ k}\Omega$ 100μ 13.7μ $100 \text$	 SECAM Interface Pin : The input and output pin for the interfacing with the SECAM IC When above 100 μA current is drawn from Pin47, system becomes SECAM mode When in non-SECAM, DC 4.6 V + AC 300 mV_{PP} When in non-SECAM, DC 1.3 V + AC 300 mV_{PP} : 4.43 MHz or 0 mV_{PP} : 3.58 MHz 	AD + DC AC 300 mV _{PP} or 0 mV _{PP} DC 4.6 V or 1.3 V
48 49	$\begin{array}{c} 5V \\ (V_{CC3}) \\ 100 \ \mu A \\ \hline 00 \ \mu$	• The outputs to 1 HDL	AC -(B-Y) AC -(R-Y) C level about 2.5 V

Pin No.	Equivalent circuit	Function	Status
50	$45 \text{ k}\Omega$ $45 \text{ k}\Omega$ $45 \text{ k}\Omega$ $45 \text{ k}\Omega$ $42 \text{ k}\Omega$ $42 \text{ k}\Omega$ $42 \text{ k}\Omega$ $42 \text{ k}\Omega$ $44 \text{ k}\Omega$	Sandcastle Pulse Output Pin : • Sandcastle pulse is outputed to1 HDL and SECAM IC	AC (Pulse) 4.7 V 2.4 V
51 52	From $1HDL$ 1HDL 1HOL	 Pin51 : -(B-Y)Input Pin Pin52 : -(R-Y)Input Pin From 1 HDL, color difference signal outputs are inputed to these pins These pins are clamped at 4.7 V pedestal level from the clamp circuit The input levels at Pin51, 20 are about 2 times the output amplitude of Pin48, 49 respectively 	-(R-Y)

Application Circuit Example

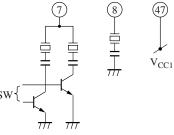
- Technical Information
- Package Allowable Loss

- Outline of major blocks
 - Video
 - (1) Y delay line built-in : total delay time is approximately 690 ns.
 - (2) Sharpness control is by using delay line aperture control. (contour emphasis type) Together with black level extention circuit, high quality picture is achieved.
 - (3) Chroma trap is built-in : Trap frequency is synchronised with the chroma VCO frequency at 4.43 MHz/3.58 MHz automatically. By I²C bus, the trap can be forced to by-pass. In SECAM mode, about 4.43 MHz free run frequency is obtained. When in black & white(B/W)mode(killer"On"), the trap is automatically by-passed.
 - (4) Pedestal clamp filter is built-in.
 - (5) Service switch : (Y contrast min., Vertical output stop). Can be switched by I²C bus.
 - (6) Chart showing the modes of the trap :

System(f _C)	Color or B/W	Trap Status
4.43 MHz(PAL)	Color	4.43 MHz
	B/W	4.43 MHz free-run
3.58 MHz(NTSC)	Color	3.58 MHz
	B/W	3.58 MHz free-run
SECAM	Color	4.43 MHz free-run
	B/W	4.43 MHz free-run
Forced manual mode by I ² C bus		About 5.5 MHz
Forced through mode by I ² C bus	_	No trap point

- Chroma
 - (1) Using base-band 1H delay line(external 1HDL IC required), adjustment free is achieved.
 - (2) BPF(4.43 MHz/3.58 MHz), ACC filters are built-in, thus external components are reduced.
 - (3) By changing the following mode using the I^2C bus :
 - 1. PAL/NTSC
 - 2. 4.43 MHz/3.58 MHz
 - 3. Forced PN/Forced SECAM

and together with the SECAM IC for automatic SECAM detection, multi-system application is possible.


- Technical Information (continued)
- Outline of major blocks (continued)
 - Chroma (continued)
 - (4) Killer output pin is available for system identification by MICOM.

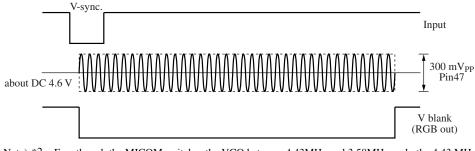
(Killer"On" $\rightarrow 0$ V : Either color signal is not properly detected due to wrong system settig, or the color signal field strength is too weak.

Killer"Off" \rightarrow 5 V : Color signal is properly detected.)

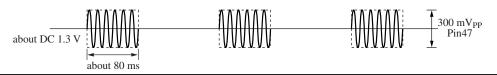
When killer is on, according to the MICOM control sequence, the mode and VCO frequency will be switched by means of the I²C bus.

- (5) During SECAM, the color difference output pins are put into high impedance.
- (6) AN5344(color-compensation IC)and other types of feature IC can be connected because color difference input pins are available.
- (7) It is possible for South American set application. (three-normal system : NTSC M,PAL M,PAL N).

Note) For PAL M, crystal MEIDEN 3575 & C = 18 pF are used.


For PAL N, crystal MEIDEN 3012-M & C = 22 pF are used.

In order to extend downwards the β curve, a capacitor of 2 pF to 4 pF is added between Pin7 and GND.


(8) PAL/NTSC, SECAM interface(Pin 47)

Input Signal	Input Signal DC		AC Level
4.43 MHz	4.43 MHz about 1.3 V		300 mV_{PP}
3.58 MHz	about 1.3 V	Х	Х
SECAM *1 about 4.6 V		4.43MHz	300 mV _{PP}
B/W *2	about 1.3 V		300 mV _{PP}

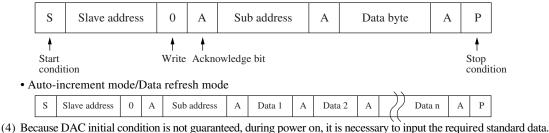
Note) *1: 4.43 MHz AC component is output during vertical retrace period, is as shown below.

Note) *2: Eventhough the MICOM switches the VCO between 4.43MHz and 3.58MHz, only the 4.43 MHz CW will be outputed at periodic intervals as shown below.

Technical Information (continued)

- Outline of major blocks (continued)
 - RGB
 - (1) OSD is made up of 3 colors of RGB, by using simple analog input, of which input at 0 V is fixed at the pedestal level.(The input dynamic range is controllable by contrast)
 - (2) White balance(drive, cutoff)adjustment is implemented by I²C bus.
 - (3) Spot killer is built-in : When power supply is off, R, G, B, output levels increase, the residue spot that is visible on the CRT is eliminated.
 - Jungle
 - (1) 2-pin are used for synchronous inputs(Horizontal, Vertical)to improve the synchronisation characteristics of horizontal and vertical synchronisation.
 - (2) The horizontal circuit is based on countdown method using a 32 f_H ceramic oscillator. AFC circuit is employing the doubler method.
 - (3) The vertical circuit is employing the trigger method's countdown circuit, thereby resulting in no adjustment and stable vertical synchronisation. The pulse output will not be interfered by interlace which is caused by pattern layout.
 - (4) Vertical frequency identification circuit is built-in : the output of 50/60 Hz identification is determined according to the vertical synchronous frequency.(60 Hz → "H")

Below 45 Hz and above 65 Hz, the previous state is hold. After 3 consecutive vertical period, if 60 or 50 Hz is identifield, the initial output will be changed.


- (5) Horizontal lock detection circuit and X-ray protection circuit(Shut down method)are built-in.
- (6) Picture centre position is adjustable by I²C bus.($\pm 1.6 \ \mu s$)
- (7) In the case of blue back in a weak field, the vertical trigger can be in off mode(I²C bus). Thus a stable picture is maintained.
- I²C Bus
 - (1) There are 15 built-in DAC controls and 13 built-in switches to reduce adjustment for set maker.
 - (2) Auto-increment function present :
 - Sub address 0*: Auto-increment mode

(When the data is sent in consecutive order, the sub-address will be changed in consecutive order, as data is inputed)

• Sub address 8*: Data refresh mode

(When the data is sent consecutively, it is sent to the same sub-address)

- (3) I²C Bus Protocol
 - Slave address : 10001010(8AH)
 - Format(Usual)

- Technical Information (continued)
- Outline of major blocks (continued)
 - I²C Bus Addressing

Sub	Data Byte							
Address	D7	D6	D5	D4	D3	D2	D1	D0
00 (40H)	$\begin{array}{c} P/N\\ (0 \rightarrow P) \end{array}$	4			Color			
01 (40H)	PN/S (0→PN)	4			Tint			
02 (80H)	•				Brightness			
03 (40H)	$\begin{array}{c} \text{SSW} \\ (0 \rightarrow \text{Off}) \end{array}$	4			Contrast			
04 (A0H)	Ext. DAC2 $(1 \rightarrow typ.)$		4		Sharpness			
05 (80H)	•				Cutoff R			
06 (40H)	•				Cutoff G			
07 (80H)	•				Cutoff B			
08 (80H)	•				Drive R			
09 (80H)	-				Drive B			
0A (88H)	-		Video adjust		-		H center	
0B (01H)					External DAC2			
0C (40H)	$\begin{array}{c} \text{SECAM} \\ \text{Enable} \\ (0 \rightarrow \text{enable}) \end{array}$	4			External DAC1			•
0D (40H)		-			External DAC3			
0E (01H)	Ver. trig stop $(0 \rightarrow \text{normal})$	Auto trap $(0 \rightarrow auto)$	Cut off B $(0 \rightarrow typ.)$	$\begin{array}{c} \text{Cut off} \\ \text{R} \\ (0 \rightarrow \text{typ.}) \end{array}$	Ver. OSC $(0 \rightarrow 50)$	Ver. Auto trap $(0 \rightarrow auto)$	$\begin{array}{c} \text{Chroma} \\ \text{trap} \\ (0 \rightarrow \text{normal}) \end{array}$	$\begin{array}{c} \text{Chroma} \\ \text{VCO} \\ (1 \rightarrow 4.43) \end{array}$

Note) Items in the brackets are initial conditions.

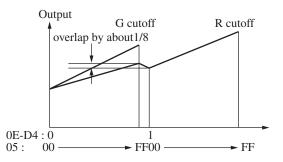
- Technical Information (continued)
- Outline of major blocks (continued)
 - I²C Bus Control Contents
 - 1. For the Control information, for all sub-address, when data goes up, output increases.

 $(Example: Contrast 00 \rightarrow contrast min., 7F \rightarrow contrast max., Brightness 00 \rightarrow pedestal low, FF \rightarrow pedestal high)$

- 2. Other control supplementary
 - (1) 00 : Color

When Color data is 00, chroma output is completely cutoff so that color is off.

(2) 01 : Tint


When tint data is 00, the skin color approaches red. When tint data is 7F, the skin color approaches green.

(3) 05, 06, 07(8-bit)and 0ED4, 0ED5(1-bit) : cutoff R, G, B

The cutoff controllable range has increased resolution with 1 extra bit and is segmented into 2 sub-section, each section is variable by 8-bit DAC.

(Cutoff G is 1 section of 8-bit DAC, that has the same variable range as R, B)

Example : Case of R cutoff

(4) 08, 09 : Drive R, B

8-bit DAC 1 section(no switching of sub-section).

(5) 0A : Video Adjust

Data $0^* \rightarrow$ composite video min. F* \rightarrow composite video max. This control is used to adjust the composite video level.

(6) 0A : Horizontal Centre

Data $*0 \rightarrow$ picture moves left. $*F \rightarrow$ picture moves right.

(7) 0B : External DAC2 and 04 D7

External DAC2 has 8-bits DAC of 2 sections adjustment.

Data $01 \rightarrow DC$ voltage shifts down.

Data $FF \rightarrow DC$ voltage shifts up.

(8) 0C : External DAC1

Data $00 \rightarrow DC$ voltage shifts down.

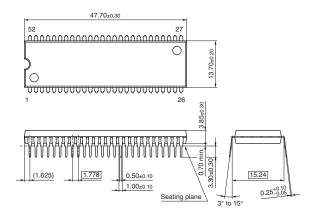
Data $7F \rightarrow DC$ voltage shifts up.

(9) 0D : External DAC3

Data 00 \rightarrow DC voltage shifts down.

Data 7F \rightarrow DC voltage shifts up.

- Technical Information (continued)
- Outline of major blocks (continued)
 - Switch Operation


Data Bit	SW Contents	Detail Contents
00-D7	PAL/NTSC mode switch (0 \rightarrow PAL) (1 \rightarrow NTSC)	 Choroma signal delay line correction(PAL : short) BGP width change(PAL : wide) CW switch to killer(PAL : 90/270 deg) Tint operation change(PAL : Tint off) Ident operation change(PAL : Operating)
01-D7	PAL, NTSC/SECAM mode switch	Demodulator Output mode switch
	$(0 \rightarrow \text{normal detection mode})$ $(1 \rightarrow \text{forced SECAM mode})$	In forced SECAM, color difference pin(48, 49) become high impedence.
03-D7	SSW(Service switch) (0 \rightarrow normal) (1 \rightarrow Service mode)	• When in Service mode(1 H line white balance adjust Vertical output pulse stop(DC about 4.3 V) Y output off, Chroma output present
04-D6	Not used	
04-D7	External DAC2 ($0 \rightarrow \text{no offset}$) ($1 \rightarrow \text{offset}$)	• For External DAC2 2 section adjustment
0C-D7	SECAM enable switch	SECAM error detection prevention switch
	$(0 \rightarrow \text{normal})$ $(1 \rightarrow \text{forced disable SECAM})$	1 → non-SECAM,SECAM detection input condition (Pin47)will not be received
0D-D7	Not used	
0E-D0	Chroma VCO switch $(0 \rightarrow 3.58 \text{ MHz})$ $(1 \rightarrow 4.43 \text{ MHz})$	Chroma oscillator circuit switch (video circuit trap frequency also switch)
0E-D1	Chroma trap switch (0 \rightarrow Trap present) (1 \rightarrow Through)	• Video circuit's chroma trap switch (Y signal phase shift when through)
0E-D2	Vertical auto switch $(0 \rightarrow \text{Auto switch})$ $(1 \rightarrow \text{Manual switch})$	Vertical frequency detection circuit switch Auto switch : Auto detection mode by internal counte Manual switch : Depending on 0E-D3 data to force into 50 or 60 Hz mode.
0E-D3	Vertical oscillator switch $(0 \rightarrow 50 \text{ Hz})$ $(1 \rightarrow 60 \text{ Hz})$	• Vertical frequency switch Only effective if 0E-D2 data is 1
0E-D4	Cutoff R $(0 \rightarrow \text{no offset})$ $(1 \rightarrow \text{offset})$	• Used to switch the cutoff R between 2 section
0E-D5	Cutoff B (0 \rightarrow no offset) (1 \rightarrow offset)	• Used to switch the cutoff B between 2 section

■ Technical Information (continued)

- Outline of major blocks (continued)
 - Switch Operation (continued)

Data Bit	SW Contents	Detail Contents	
0E-D6	Trap auto switch (0 \rightarrow Auto switch) (1 \rightarrow frequency fixed)	• Auto switch : Moves with chroma oscillating freque Frequency fixed : fixed at about 5.7 MHz	
0E-D7	Vertical trigger stop switch ($0 \rightarrow \text{normal}$) ($1 \rightarrow \text{trigger off}$)	 Switch for prevention of vertical trigger input 1 → trigger input off. In blue back etc., vertical dancing due to any noise is prevented. 	

- New Package Dimensions (Unit: mm)
- SDIP052-P-0600F (Lead-free package)

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.