AN8737SB

3-channel driver IC for optical disk drive

Overview

The AN8737SB is a BTL type 3-channel driver IC, adopting a current feedback system for 2 channels, which makes it optimum for an actuator and a motor driver of CD-ROM/DVD-ROM. It can also constitute an optimum system in combination with the AN8488SB, a spindle plus loading driver IC. A surface mount-type package of good heat radiation characteristic is used.

Features

- Little phase delay due to a current feedback system (2 channels for actuator)
- The remaining channel is available for either traverse or loading motor drive.
- Wide output dynamic range (4 $V/I_0 = 800 \text{ mA}$)
- Standby function built in (all channels can be muted.)
- Thermal shut-down circuit built in
- With thermal flag pin

Applications

- CD/CD-ROM player
- DVD/DVD-ROM drive

Note) The package of this product will be changed to lead-free type (HSOP042-P-0400D). See the new package dimensions section later of this datasheet.

Block Diagram

Pin Descriptions

Pin No.	Description	Pin No.	Description
1	Ch. 2 first stage feedback pin	16	Ch. 3 reverse direction output pin
2	Ch. 2 first stage input pin	17	Ch. 3 power side grounding pin
3	Ch. 1 first stage input pin	18	Ch. 3 mute pin
4	Ch. 1 first stage feedback pin	19	Ch. 3 forward direction output pin
5	Ch. 1 current feedback input pin	20	TDS flag pin
6	Ch. 1 current feedback output pin	21	Ch. 3 power side power supply pin
7	Control side power supply pin	22	N.C.
8	Ch. 1 & ch. 2 power side power supply pin	23	Ch. 3 reverse rotation input pin
9	Ch. 1 reverse direction output pin	24	Standby input pin
10	N.C.	25	Ch. 3 forward rotation input pin
11	Ch. 1 & Ch. 2 mute pin	26	Reference voltage input pin
12	Ch. 2 forward direction output pin	27	Ch. 2 current feedback output pin
13	Ch. 1 & ch. 2 power side grounding pin	28	Ch. 2 current feedback input pin
14	Ch. 2 reverse direction output pin	Fin	Control side grounding pin
15	Ch. 2 forward direction output pin		

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	
Supply voltage	V _{CC}	14.0	V	
Supply voltage range	SV_{CC} , PV_{CC1} , PV_{CC2}	- 0.3 to +14.0	V	
Supply current *2	I _{SVCC}	500	mA	
	I _{PVCC1}	2.0	А	
	I _{PVCC2}	800	mA	
Power dissipation *3	P _D	542	mW	
Operating ambient temperature *1	T _{opr}	-30 to +85	°C	
Storage temperature *1	T _{stg}	-55 to +150	°C	

Note) *1: Except for the operating ambient temperature and storage temperature, all ratings are for $T_a = 25^{\circ}C$.

*2: I_{PVCC1} be 1 A or less for channel 1 and channel 2, respectively.

*3: Use within the range of P_D = 542 mW or less at T_a = 85°C, following the allowable power dissipation characteristic curve of "■ Application Notes".

Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	SV _{CC}	4.5 to 13.5	V
	PV_{CC1} , PV_{CC2}	3.5 to 13.5	

■ Electrical Characteristics at $SV_{CC} = 12 \text{ V}$, $PV_{CC1} = 5 \text{ V}$, $PV_{CC2} = 5 \text{ V}$, $R_L = 8 \Omega$, $V_{REF} = 1.65 \text{ V}$, $V_{SB} = V_{PC1} = V_{PC2} = 3.3 \text{ V}$, $V_{IN1} = V_{IN2} = V_{IN3} = 1.65 \text{ V}$, $T_a = 25^{\circ}C$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Current consumption 1 (no signal)	I _{SVO}	$V_{IN1} = V_{IN2} = V_{REF}$, $V_{IN3P} = 2.5$ V $V_{SB} = V_{PC1} = V_{PC2} = 3.3$ V	_	25	45	mA
Current consumption 2 (no signal)	I _{PVO}	$V_{IN1} = V_{IN2} = V_{REF}, V_{IN3P} = 2.5 V$ $V_{SB} = V_{PC1} = V_{PC2} = 3.3 V$		25	45	mA
Current consumption 1 (standby)	I _{SVSB}	$\begin{split} V_{IN1} &= V_{IN2} = V_{REF} \ , \ V_{IN3P} = 2.5 \ V \\ V_{SB} &= V_{PC1} = V_{PC2} = 0 \ V \end{split}$		0.6	1.5	mA
Current consumption 2 (standby)	I _{PVSB}	$V_{IN1} = V_{IN2} = V_{REF}, V_{IN3P} = 2.5 V$ $V_{SB} = V_{PC1} = V_{PC2} = 0 V$		0.2	1.0	mA
Driver 1, Driver 2 R _{L1} , R _I	$_{2} = 4 \Omega, F$	R_{S1} , $R_{S2} = 0.5 \Omega$, R_{IN1} , $R_{IN2} = 10 \text{ k}\Omega$, R_{IN2}	_{F1} , R _{F2} :	= 4.3 k s	2	
Output offset voltage	V _{OF1}	$V_{IN} = V_{REF}$	-100	0	100	mV
Gain (+)	G1+	$V_{IN} = V_{REF} \pm 50 \text{ mV}$	9	11	13	dB
Relative gain (+/–)	G1		-1.5		+1.5	dB
Maximum output amplitude (+)	V _{L1+}	$\begin{split} V_{IN} &= 3.3 \ V, R_{L1} \ , R_{L2} = 4 \ \Omega \\ R_{S1} \ , R_{S2} &= 0.5 \ \Omega \end{split}$	3.65	4.0		V
Maximum output amplitude (–)	V _{L1-}	$\begin{split} V_{IN} &= 0 \ V, R_{L1} \ , R_{L2} = 4 \ \Omega \\ R_{S1} \ , R_{S2} &= 0.5 \ \Omega \end{split}$		-4.0	-3.65	V

■ Electrical Characteristics at $SV_{CC} = 12 \text{ V}, \text{PV}_{CC1} = 5 \text{ V}, \text{PV}_{CC2} = 5 \text{ V}, \text{R}_{L} = 8 \Omega, \text{V}_{REF} = 1.65 \text{ V}, \text{V}_{SB} = \text{V}_{PC1} = \text{V}_{PC2} = 3.3 \text{ V}, \text{V}_{IN1} = \text{V}_{IN2} = \text{V}_{IN3} = 1.65 \text{ V}, \text{T}_{a} = 25^{\circ}\text{C} \text{ (continued)}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit		
Driver 3 $R_L = 8 \Omega$								
Output offset voltage	V _{OF3}	$V_{IN3P} = V_{IN3N} = 2.5 V$	-150	0	150	mV		
Gain (+)	G3+	$V_{IN3P} = 2.5 V$, $V_{IN3P} = 2.5 V \pm 50 mV$ No external resistor	19	20.5	22	dB		
Relative gain (+/–)	G3		-1.5		+1.5	dB		
Output voltage (+)	V ₃₊	$V_{IN3N} = 5 V,$ $R_{A1} = 27 k\Omega, R_{A2} = 6.8 k\Omega$	3.05	3.4	3.75	V		
Output voltage (-)	V ₃₋	$\begin{split} V_{IN3N} &= 0 \ V, \\ R_{A1} &= 27 \ k\Omega, \ R_{A2} &= 6.8 \ k\Omega \end{split}$	-3.75	-3.4	-3.05	V		
Input pin bias current	I _{IN3}	$V_{IN3N} = 0 V$	_	_	1	μΑ		
Standby operation High:	Standby operation High: Active, low or Hi-Z: Standby							
High-level SB threshold voltage	V _{SBH}	$SV_{CC} = 12 V$	2.6		—	V		
Low-level SB threshold voltage	V _{SBL}	$SV_{CC} = 12 V$			0.7	V		
SB input current I		$V_{SB} = 5 V$		50	120	μΑ		
Power cut operation High	: Active,	low or Hiz: Power cut						
High-level PC1 threshold voltage	V _{PC1H}	$SV_{CC} = 12 V$	2.6		—	V		
Low-level PC1 threshold voltage	V _{PC1L}	$SV_{CC} = 12 V$			0.7	V		
High-level PC2 threshold voltage	V _{PC2H}	$SV_{CC} = 12 V$	2.6	_	—	V		
Low-level PC2 threshold voltage	V _{PC2L}	$SV_{CC} = 12 V$			0.7	V		
PC1 input current	I _{PC1}	$V_{PC1} = 5 V$	—	70	120	μΑ		
PC2 input current	I _{PC2}	$V_{PC2} = 5 V$	_	70	120	μA		
Reset current	Reset current							
Reset operation release supply voltage	V _{RST}		_		4.5	V		
V _{REF} detection voltage	V _R		1.20			V		

• Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit		
Thermal protection circuit	Thermal protection circuit							
Operating temperature equilibrium value	T _{THD}			160		°C		
Operating temperature hysteresis width	ΔT_{THD}			40		°C		
Temperature flag balancing value	T _{FLG}			150		°C		
Temperature flag hysteresis width	ΔT_{FLG}			20		°C		

- Electrical Characteristics at $SV_{CC} = 12 V$, $PV_{CC1} = 5 V$, $PV_{CC2} = 5 V$, $R_L = 8 \Omega$, $V_{REF} = 1.65 V$,
 - $V_{SB} = V_{PC1} = V_{PC2} = 3.3 \ V, \ V_{IN1} = V_{IN2} = V_{IN3} = 1.65 \ V, \ T_a = 25^{\circ}C \ (continued)$
- Design reference data (continued)

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Thermal protection circuit (co	ntinued)					
Operating temperature difference bet. thermal protection/temperature flag	ΔT_{TF}			10		°C
Temperature flag output high value	V _{FLH}	$SV_{CC} = 12 V$		5		V
Supply voltage detection hysteresis width	ΔV_{HD}			0.2		V

Usage Notes

- 1. Use SV_{CC} at the maximum potential. Otherwise it will cause operation error.
- 2. Do not use PV_{CC1} and PV_{CC2} at 2 V or less, or at the high impedance.
- 3. Driver 1, driver 2 gain setting (Use a resistor of sufficient power dissipation for R_S .)

4. On the mode of mute:

	SB = PC	SB = PC1 = low or Hi-Z	
	PC2 = high	PC2 = low or Hi-Z	—
Ch. 1, Ch. 2	Active	Active	All mute,
Ch. 3	Active	Mute	power save

Never fail to input the same signal into SB pin (pin 24) and PC1 pin (pin 11).

■ Usage Notes (continued)

5. On the output maximum amplitude (Reference data: typical value)

Use load current at 1 A or less.

- 6 Appropriate care should be taken on the characteristics. When changing an external circuit constant on actual use, secure an appropriate margin in consideration of characteristic fluctuation of external parts and our ICs including transient characteristics as well as static ones.
- 7 Avoid the short-circuits between output pin or current detection pin and V_{CC} (line-to-supply fault), output pin or current detection pin and GND (line-to-ground fault), and output pins or output pin and current detection pin (load short-ciruit).
- 8 An appropriate prior study should be done for use of dip soldering.
- 9 Care should be taken on use of the following pin because of its low static breakdown voltage (C = 200 pF, R = 0 Ω). Pin 18: Breakdown at 200 V

Application Notes

• $P_D - T_a$ curves of HSOP042-P-0400

Application Circuit Example

- New Package Dimensions (Unit: mm)
- HSOP042-P-0400D (Lead-free package)

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.