Features

- EE Programmable 65,536 x 1-, 131,072 x 1-, 262,144 x 1-, 524,288 x 1-, 1,048,576 x 1-, 2,097,152 x 1-, and 4,194,304 x 1-bit Serial Memories Designed to Store Configuration Programs for Field Programmable Gate Arrays (FPGAs)
- Supports both 3.3V and 5.0V Operating Voltage Applications
- In-System Programmable (ISP) via Two-Wire Bus
- Simple Interface to SRAM FPGAs
- Compatible with Atmel AT6000, AT40K and AT94K Devices, Altera FLEX[®], APEX[™] Devices, Lucent ORCA[®], Xilinx XC3000[™], XC4000[™], XC5200[™], Spartan[®], Virtex[®] FPGAs
- Cascadable Read-back to Support Additional Configurations or Higher-density Arrays
- Very Low-power CMOS EEPROM Process
- Programmable Reset Polarity
- Available in 6 mm x 6 mm x 1 mm 8-lead LAP (Pin-compatible with 8-lead SOIC/VOIC Packages), 8-lead PDIP, 8-lead SOIC, 20-lead PLCC, 20-lead SOIC, 44-lead PLCC and 44-lead TQFP Packages
- Emulation of Atmel's AT24CXXX Serial EEPROMs
- Low-power Standby Mode
- High-reliability
 - Endurance: 100,000 Write Cycles
 - Data Retention: 90 Years for Industrial Parts (at 85°C) and 190 Years for Commercial Parts (at 70°C)

Description

The AT17LV series FPGA Configuration EEPROMs (Configurators) provide an easyto-use, cost-effective configuration memory for Field Programmable Gate Arrays. The AT17LV series device is packaged in the 8-lead LAP, 8-lead PDIP, 8-lead SOIC, 20lead PLCC, 20-lead SOIC, 44-lead PLCC and 44-lead TQFP, see Table 1. The AT17LV series Configurators uses a simple serial-access procedure to configure one or more FPGA devices. The user can select the polarity of the reset function by programming four EEPROM bytes. These devices also support a write-protection mechanism within its programming mode.

The AT17LV series configurators can be programmed with industry-standard programmers, Atmel's ATDH2200E Programming Kit or Atmel's ATDH2225 ISP Cable.

Package	AT17LV65/ AT17LV128/ AT17LV256	AT17LV512/ AT17LV010	AT17LV002	AT17LV040
8-lead LAP	Yes	Yes	Yes	(3)
8-lead PDIP	Yes	Yes	_	-
8-lead SOIC	Yes	Use 8-lead LAP ⁽¹⁾	Use 8-lead LAP ⁽¹⁾	(3)
20-lead PLCC	Yes	Yes	Yes	_
20-lead SOIC	Yes ⁽²⁾	Yes ⁽²⁾	Yes ⁽²⁾	_
44-lead PLCC	_	_	Yes	Yes
44-lead TQFP	_	_	Yes	Yes

 Table 1. AT17LV Series Packages

Notes: 1. The 8-lead LAP package has the same footprint as the 8-lead SOIC. Since an 8-lead SOIC package is not available for the AT17LV512/010/002 devices, it is possible to use an 8-lead LAP package instead.

- The pinout for the AT17LV65/128/256 devices is not pin-for-pin compatible with the AT17LV512/010/002 devices.
- 3. Refer to the AT17Fxxx datasheet, available on the Atmel web site.

FPGA Configuration EEPROM Memory

AT17LV65 AT17LV128 AT17LV256 AT17LV512 AT17LV010 AT17LV002 AT17LV040

3.3V and 5V System Support

Rev. 2321E-CNFG-06/03

Pin Configuration

Notes: 1. This pin is only available on AT17LV65/128/256 devices.2. This pin is only available on AT17LV512/010/002 devices.

Note: 1. This pinout only applies to AT17LV65/128/256 devices.

Note: 1. This pinout only applies to AT17LV512/010/002 devices.

Note: 1. This pin is only available on AT17LV002 devices.

Block Diagram

Notes:1. This pin is only available on AT17LV65/128/256 devices.2. This pin is only available on AT17LV512/010/002 devices.

Device Description

The control signals for the configuration EEPROM (\overline{CE} , RESET/ \overline{OE} and CCLK) interface directly with the FPGA device control signals. All FPGA devices can control the entire configuration process and retrieve data from the configuration EEPROM without requiring an external intelligent controller.

The configuration EEPROM RESET/ \overline{OE} and \overline{CE} pins control the tri-state buffer on the DATA output pin and enable the address counter. When RESET/ \overline{OE} is driven High, the configuration EEPROM resets its address counter and tri-states its DATA pin. The \overline{CE} pin also controls the output of the AT17LV series configurator. If \overline{CE} is held High after the RESET/ \overline{OE} reset pulse, the counter is disabled and the DATA output pin is tri-stated. When \overline{OE} is subsequently driven Low, the counter and the DATA output pin are enabled. When RESET/ \overline{OE} is driven High again, the address counter is reset and the DATA output pin is tri-stated, regardless of the state of \overline{CE} .

When the configurator has driven out all of its data and \overline{CEO} is driven Low, the device tri-states the DATA pin to avoid contention with other configurators. Upon power-up, the address counter is automatically reset.

This is the default setting for the device. Since almost all FPGAs use RESET Low and OE High, this document will describe RESET/OE.

Pin Description

DATA

		А	AT17LV65 T17LV128 AT17LV25	B/		T17LV51	-	AT17LV002				AT17	LV040	
Name	I/O	8 DIP/ LAP/ SOIC	20 PLCC	20 SOIC	8 DIP/ LAP	20 PLCC	20 SOIC	8 DIP/ LAP/ SOIC	20 PLCC	20 SOIC	44 PLCC	44 TQFP	44 PLCC	44 TQFP
DATA	l/ O	1	2	2	1	2	1	1	2	1	2	40	2	40
CLK	I	2	4	4	2	4	3	2	4	3	5	43	5	43
WP1	I	_	_	_	-	5	_	_	5	-	_	_	_	_
RESET/OE	I	3	6	6	3	6	8	3	6	8	19	13	19	13
WP2	I				-	7	_	_	7	-	_	_	_	_
CE	I	4	8	8	4	8	10	4	8	10	21	15	21	15
GND		5	10	10	5	10	11	5	10	11	24	18	24	18
CEO	0	6	14	14	6	14	13	6	14	13	27	21	27	21
A2	Ι	D	14	14	D	14	-	0	14	Ι	21	21	21	21
READY	0	Ι	_	_	Ι	15	-	-	15	Ι	29	23	29	23
SER_EN	I	7	17	17	7	17	18	7	17	18	41	35	41	35
V _{CC}		8	20	20	8	20	20	8	20	20	44	38	44	38

Three-state DATA output for configuration. Open-collector bi-directional pin for programming.

CLK Clock input. Used to increment the internal address and bit counter for reading and programming.

- WP1WRITE PROTECT (1). Used to protect portions of memory during programming. Dis-
abled by default due to internal pull-down resistor. This input pin is not used during
FPGA loading operations. This pin is only available on AT17LV512/010/002 devices.
- **RESET/OE** Output Enable (active High) and RESET (active Low) when SER_EN is High. A Low level on RESET/OE resets both the address and bit counters. A High level (with CE Low) enables the data output driver. The logic polarity of this input is programmable as either RESET/OE or RESET/OE. For most applications, RESET should be programmed active Low. This document describes the pin as RESET/OE.
- WP Write protect (WP) input (when CE is Low) during programming only (SER_EN Low). When WP is Low, the entire memory can be written. When WP is enabled (High), the lowest block of the memory cannot be written. This pin is only available on AT17LV65/128/256 devices.
- WP2WRITE PROTECT (2). Used to protect portions of memory during programming. Dis-
abled by default due to internal pull-down resistor. This input pin is not used during
FPGA loading operations. This pin is only available on AT17LV512/010 devices.

6 AT17LV65/128/256/512/010/002/040

CE	Chip Enable input (active Low). A Low level (with OE High) allows CLK to increment the address counter and enables the data output driver. A High level on \overline{CE} disables both the address and bit counters and forces the device into a low-power standby mode. Note that this pin will <i>not</i> enable/disable the device in the Two-Wire Serial Programming mode (SER_EN Low).
GND	Ground pin. A 0.2 μF decoupling capacitor between V_{CC} and GND is recommended.
CEO	Chip Enable Output (active Low). This output goes Low when the address counter has reached its maximum value. In a daisy chain of AT17LV series devices, the \overline{CEO} pin of one device must be connected to the \overline{CE} input of the next device in the chain. It will stay Low as long as \overline{CE} is Low and OE is High. It will then follow CE until OE goes Low; thereafter, \overline{CEO} will stay High until the entire EEPROM is read again.
A2	Device selection input, A2. This is used to enable (or select) the device during program- ming (i.e., when SER_EN is Low). A2 has an internal pull-down resistor.
READY	Open collector reset state indicator. Driven Low during power-up reset, released when power-up is complete. It is recommended to use a 4.7 k Ω pull-up resistor when this pin is used.
SER_EN	Serial enable must be held High during FPGA loading operations. Bringing $\overline{\text{SER}_{EN}}$ Low enables the Two-Wire Serial Programming Mode. For non-ISP applications, $\overline{\text{SER}_{EN}}$ should be tied to V _{CC} .
V _{cc}	3.3V (\pm 10%) and 5.0V (\pm 5% Commercial, \pm 10% Industrial) power supply pin.

FPGA Master Serial The I/O and logic functions of any SRAM-based FPGA are established by a configuration program. The program is loaded either automatically upon power-up, or on Mode Summary command, depending on the state of the FPGA mode pins. In Master mode, the FPGA automatically loads the configuration program from an external memory. The AT17LV Serial Configuration EEPROM has been designed for compatibility with the Master Serial mode. This document discusses the Atmel AT40K, AT40KAL and AT94KAL applications as well as Xilinx applications. Control of Most connections between the FPGA device and the AT17LV Serial EEPROM are simple and self-explanatory. Configuration The DATA output of the AT17LV series configurator drives DIN of the FPGA devices. The master FPGA CCLK output drives the CLK input of the AT17LV series configurator. The CEO output of any AT17LV series configurator drives the CE input of the next configurator in a cascaded chain of EEPROMs. SER_EN must be connected to V_{CC} (except during ISP). The READY⁽¹⁾ pin is available as an open-collector indicator of the device's reset status; it is driven Low while the device is in its power-on reset cycle and released (tri-stated) when the cycle is complete. Note: 1. This pin is not available for the AT17LV65/128/256 devices. Cascading Serial For multiple FPGAs configured as a daisy-chain, or for FPGAs requiring larger configuration memories, cascaded configurators provide additional memory. Configuration After the last bit from the first configurator is read, the clock signal to the configurator **EEPROMs** asserts its CEO output Low and disables its DATA line driver. The second configurator recognizes the Low level on its \overline{CE} input and enables its DATA output. After configuration is complete, the address counters of all cascaded configurators are reset if the RESET/OE on each configurator is driven to its active (Low) level. If the address counters are not to be reset upon completion, then the RESET/OE input can be tied to its inactive (High) level. AT17LV Series Reset The AT17LV series configurator allows the user to program the reset polarity as either RESET/OE or RESET/OE. This feature is supported by industry-standard programmer Polarity algorithms. **Programming Mode** The programming mode is entered by bringing SER_EN Low. In this mode the chip can be programmed by the Two-Wire serial bus. The programming is done at V_{CC} supply only. Programming super voltages are generated inside the chip. **Standby Mode** The AT17LV series configurators enter a low-power standby mode whenever \overline{CE} is asserted High. In this mode, the AT17LV65/128/256 configurator consumes less than 50 μ A of current at 3.3V (100 μ A for the AT17LV512/010 and 200 μ A for the AT17LV002/040). The output remains in a high-impedance state regardless of the state of the OE input.

8 AT17LV65/128/256/512/010/002/040

Absolute Maximum Ratings*

Operating Temperature40°C to +85°C
Storage Temperature65 °C to +150°C
Voltage on Any Pin with Respect to Ground0.1V to V_{CC} +0.5V
Supply Voltage (V $_{\rm CC}$)0.5V to +7.0V
Maximum Soldering Temp. (10 sec. @ 1/16 in.)260°C
ESD (R _{ZAP} = 1.5K, C _{ZAP} = 100 pF)

*NOTICE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those listed under operating conditions is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

Operating Conditions

			3.	.3V	5		
Symbol	Description		Min	Max	Min	Max	Units
N	Commercial	Supply voltage relative to GND -0°C to +70°C	3.0	3.6	4.75	5.25	v
V _{cc}	Industrial	Supply voltage relative to GND -40°C to +85°C	3.0	3.6	4.5	5.5	V

DC Characteristics

 $V_{CC}=3.3V\pm10\%$

			AT17	'LV65/ LV128/ LV256	AT17LV512/ AT17LV010		AT17LV002/ AT17LV040		
Symbol	Description		Min	Мах	Min	Мах	Min	Мах	Units
V _{IH}	High-level Input Voltage		2.0	V _{cc}	2.0	V _{cc}	2.0	V _{cc}	V
V _{IL}	Low-level Input Voltage		0	0.8	0	0.8	0	0.8	V
V _{OH}	High-level Output Voltage (I _{OH} = -2.5 mA)		2.4		2.4		2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Commercial		0.4		0.4		0.4	V
V _{OH}	High-level Output Voltage (I _{OH} = -2 mA)		2.4		2.4		2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Industrial		0.4		0.4		0.4	V
I _{CCA}	Supply Current, Active Mode			5		5		5	mA
I _L	Input or Output Leakage Current ($V_{IN} = V_{CC}$	or GND)	-10	10	-10	10	-10	10	μA
		Commercial		50		100		150	μA
I _{CCS}	Supply Current, Standby Mode	Industrial		100		100		150	μA

DC Characteristics

 V_{CC} = 5V \pm 5% Commercial; V_{CC} = 5V \pm 10% Industrial

			AT17	'LV65/ LV128/ LV256		_V512/ LV010		_V002/ _V040	
Symbol	Description		Min	Max	Min	Max	Min	Max	Units
V _{IH}	High-level Input Voltage		2.0	V _{cc}	2.0	V _{cc}	2.0	V _{cc}	V
V _{IL}	Low-level Input Voltage		0	0.8	0	0.8	0	0.8	V
V _{OH}	High-level Output Voltage (I _{OH} = -2.5 mA)		3.7		3.86		3.86		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Commercial		0.32		0.32		0.32	V
V _{OH}	High-level Output Voltage (I _{OH} = -2 mA)		3.6		3.76		3.76		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Industrial		0.37		0.37		0.37	V
I _{CCA}	Supply Current, Active Mode			10		10		10	mA
IL	Input or Output Leakage Current ($V_{IN} = V_{CC}$	or GND)	-10	10	-10	10	-10	10	μA
		Commercial		75		200		350	μA
I _{CCS}	Supply Current, Standby Mode	Industrial		150		200		350	μA

AC Characteristics

AC Characteristics when Cascading

AC Characteristics

 $V_{CC} = 3.3V \pm 10\%$

			AT17LV6	5/128/256	;	AT	17LV512/	010/002/	040	
		Commercial		Industrial		Commercial		Industrial		
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{OE} ⁽¹⁾	OE to Data Delay		50		55		50		55	ns
$T_{CE}^{(1)}$	CE to Data Delay		60		60		55		60	ns
T _{CAC} ⁽¹⁾	CLK to Data Delay		75		80		55		60	ns
Т _{он}	Data Hold from \overline{CE} , OE, or CLK	0		0		0		0		ns
T _{DF} ⁽²⁾	CE or OE to Data Float Delay		55		55		50		50	ns
T _{LC}	CLK Low Time	25		25		25		25		ns
T _{HC}	CLK High Time	25		25		25		25		ns
T _{SCE}	CE Setup Time to CLK (to guarantee proper counting)	35		60		30		35		ns
T _{HCE}	CE Hold Time from CLK (to guarantee proper counting)	0		0		0		0		ns
T _{HOE}	OE High Time (guarantees counter is reset)	25		25		25		25		ns
F _{MAX}	Maximum Clock Frequency		10		10		15		10	MHz

Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured \pm 200 mV from steady-state active levels.

AC Characteristics when Cascading

 $V_{CC}=3.3V\pm10\%$

		AT17LV65/128/256			6	AT				
		Commercial		Industrial		Commercial		Industrial		1
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Мах	Units
$T_{CDF}^{(2)}$	CLK to Data Float Delay		60		60		50		50	ns
T _{OCK} ⁽¹⁾	CLK to CEO Delay		55		60		50		55	ns
T _{OCE} ⁽¹⁾	CE to CEO Delay		55		60		35		40	ns
T _{OOE} ⁽¹⁾	RESET/OE to CEO Delay		40		45		35		35	ns
F _{MAX}	Maximum Clock Frequency		8		8		12.5		10	MHz

Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured \pm 200 mV from steady-state active levels.

AC Characteristics

			AT17LV6	5/128/256	6	AT	040			
		Commercial Industrial		strial	Commercial		Industrial]	
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{OE} ⁽¹⁾	OE to Data Delay		30		35		30		35	ns
T _{CE} ⁽¹⁾	CE to Data Delay		45		45		45		45	ns
T _{CAC} ⁽¹⁾	CLK to Data Delay		50		55		50		50	ns
Т _{ОН}	Data Hold from \overline{CE} , OE, or CLK	0		0		0		0		ns
T _{DF} ⁽²⁾	CE or OE to Data Float Delay		50		50		50		50	ns
T _{LC}	CLK Low Time	20		20		20		20		ns
T _{HC}	CLK High Time	20		20		20		20		ns
T _{SCE}	CE Setup Time to CLK (to guarantee proper counting)	35		40		20		25		ns
T _{HCE}	CE Hold Time from CLK (to guarantee proper counting)	0		0		0		0		ns
T _{HOE}	OE High Time (guarantees counter is reset)	20		20		20		20		ns
F _{MAX}	Maximum Clock Frequency		12.5		12.5		15		15	MHz

Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured ± 200 mV from steady-state active levels.

AC Characteristics when Cascading

 V_{CC} = 5V \pm 5% Commercial; V_{CC} = 5V \pm 10% Industrial

		AT17LV65/1			6	AT	17LV512/	010/002/	040	
		Commercial		Industrial		Commercial		Industrial		
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
$T_{CDF}^{(2)}$	CLK to Data Float Delay		50		50		50		50	ns
T _{OCK} ⁽¹⁾	CLK to CEO Delay		35		40		35		40	ns
T _{OCE} ⁽¹⁾	CE to CEO Delay		35		35		35		35	ns
T _{OOE} ⁽¹⁾	RESET/OE to CEO Delay		30		35		30		30	ns
F _{MAX}	Maximum Clock Frequency		10		10		12.5		12.5	MHz

Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured \pm 200 mV from steady-state active levels.

Thermal Resistance Coefficients⁽¹⁾

Packag	је Туре		AT17LV65/ AT17LV128/ AT17LV256	AT17LV512/ AT17LV010	AT17LV002	AT17LV040
0014		θ_{JC} [°C/W]	45	45	45	-
8CN4	Leadless Array Package (LAP)	$\theta_{JA} [^{\circ}C/W]^{(2)}$	115.71	135.71	159.60	_
0.00		θ_{JC} [°C/W]	37	37	_	_
8P3	Plastic Dual Inline Package (PDIP)	$\theta_{JA} [^{\circ}C/W]^{(2)}$	107	107	_	_
0.01	Plastic Gull Wing Small Outline	θ _{JC} [°C/W]] 45	-	-	-
8S1	(SOIC)	$\theta_{JA} [^{\circ}C/W]^{(2)}$	150	-	-	-
001	Plastic Leaded Chip Carrier (PLCC)	θ _{JC} [°C/W]	35	35	35	_
20J		$\theta_{JA} \left[^{\circ}C/W\right]^{(2)}$	90	90	90	_
	Plastic Gull Wing Small Outline (SOIC)	θ_{JC} [°C/W]				-
20S2		$\theta_{JA} \left[^{\circ}C/W\right]^{(2)}$				_
	Thin Plastic Quad Flat Package	θ_{JC} [°C/W]	_	-	17	17
44A	(TQFP)	$\theta_{JA} [^{\circ}C/W]^{(2)}$	-	-	62	62
44J	Plastic Leaded Chip Carrier	θ_{JC} [°C/W]	-	_	15	15
	(PLCC)	$\theta_{JA} \left[^{\circ}C/W\right]^{(2)}$	_	-	50	50

Notes: 1. For more information refer to the "Thermal Characteristics of Atmel's Packages", available on the Atmel web site. 2. Airflow = 0 ft/min.

Figure 1. Ordering Code

	AT17LV65A-10PC			
				<
Voltage	Size (Bits)	Special Pinouts	Package	Temperature
3.0V to 5.5V	65 = 65K	A = Altera	C = 8CN4	C = Commercial
	128 = 128K	Blank = Xilinx/Atmel/	P = 8P3	I = Industrial
	256 = 256K	Other	N = 8S1	
	512 = 512K		J = 20J	
	010 = 1M		S = 20S2	
	002 = 2M		TQ = 44A	
	040 = 4M		BJ = 44J	

	Package Type
8CN4	8-lead, 6 mm x 6 mm x 1 mm, Leadless Array Package (LAP) – Pin-compatible with 8-lead SOIC/VOID Packages
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)
20J	20-lead, Plastic J-leaded Chip Carrier (PLCC)
20S2	20-lead, 0.300" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)
44 A	44-lead, Thin (1.0 mm) Plastic Quad Flat Package Carrier (TQFP)
44J	44-lead, Plastic J-leaded Chip Carrier (PLCC)

Ordering Information

Memory Size	Ordering Code	Package	Operation Range
64-Kbit ⁽¹⁾	AT17LV65-10CC AT17LV65-10PC AT17LV65-10NC AT17LV65-10JC AT17LV65-10SC	8CN4 8P3 8S1 20J 20S2	Commercial (0°C to 70°C)
	AT17LV65-10CI AT17LV65-10PI AT17LV65-10NI AT17LV65-10JI AT17LV65-10SI	8CN4 8P3 8S1 20J 20S2	Industrial (-40°C to 85°C)
128-Kbit ⁽¹⁾	AT17LV128-10CC AT17LV128-10PC AT17LV128-10NC AT17LV128-10JC AT17LV128-10JC AT17LV128-10SC	8CN4 8P3 8S1 20J 20S2	Commercial (0°C to 70°C)
	AT17LV128-10CI AT17LV128-10PI AT17LV128-10NI AT17LV128-10JI AT17LV128-10JI AT17LV128-10SI	8CN4 8P3 8S1 20J 20S2	Industrial (-40°C to 85°C)
256-Kbit ⁽¹⁾	AT17LV256-10CC AT17LV256-10PC AT17LV256-10NC AT17LV256-10JC AT17LV256-10JC AT17LV256-10SC	8CN4 8P3 8S1 20J 20S2	Commercial (0°C to 70°C)
	AT17LV256-10CI AT17LV256-10PI AT17LV256-10NI AT17LV256-10JI AT17LV256-10JI AT17LV256-10SI	8CN4 8P3 8S1 20J 20S2	Industrial (-40°C to 85°C)
512-Kbit ⁽¹⁾	AT17LV512-10CC AT17LV512-10PC AT17LV512-10JC AT17LV512-10JC AT17LV512-10SC	8CN4 8P3 20J 20S2	Commercial (0°C to 70°C)
	AT17LV512-10Cl AT17LV512-10Pl AT17LV512-10Jl AT17LV512-10Jl AT17LV512-10Sl	8CN4 8P3 20J 20S2	Industrial (-40°C to 85°C)
1-Mbit ⁽¹⁾	AT17LV010-10CC AT17LV010-10PC AT17LV010-10JC AT17LV010-10SC	8CN4 8P3 20J 20S2	Commercial (0°C to 70°C)
	AT17LV010-10CI AT17LV010-10PI AT17LV010-10JI AT17LV010-10JI	8CN4 8P3 20J 20S2	Industrial (-40°C to 85°C)
2-Mbit ⁽¹⁾	AT17LV002-10CC AT17LV002-10JC AT17LV002-10SC AT17LV002-10TQC AT17LV002-10BJC	8CN4 20J 20S2 44A 44J	Commercial (0°C to 70°C)
	AT17LV002-10CI AT17LV002-10JI AT17LV002-10SI AT17LV002-10TQI AT17LV002-10BJI	8CN4 20J 20S2 44A 44J	Industrial (-40°C to 85°C)
4-Mbit ⁽¹⁾	AT17LV040-10TQC AT17LV040-10BJC	44A 44J	Commercial (0°C to 70°C)
	AT17LV040-10TQI AT17LV040-10BJI	44A 44J	Industrial (-40°C to 85°C)

Note: 1. For operating 5V operating voltage, please refer to the corresponding AC and DC Characteristics.

Packaging Information

8CN4 – LAP

8P3 – PDIP

8S1 - SOIC

20J - PLCC

²⁰ AT17LV65/128/256/512/010/002/040

20S2 – SOIC

44A – TQFP

44J – PLCC

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Iavan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123

38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Atmel Configurator Hotline (408) 436-4119

Atmel Configurator e-mail configurator@atmel.com

FAQ Available on web site

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved. Atmel[®] and combinations thereof are the registered trademark of Atmel.

FLEX[™] is the trademark of Altera Corporation; ORCA[™] is the trademark of Lattice Semiconductors; SPARTAN[®] and Virtex[®] are the registered trademarks of Xilinx, Inc.; XC3000[™], XC4000[™] and XC5200[™] are the trademarks of Xilinx, Inc.; APEX[™] is the trademark of MIPS Technologies; Other terms and product names may be the trademarks of others.

Printed on recycled paper.

e-mail literature@atmel.com

Web Site http://www.atmel.com

