Features

- 2.7 to 3.6V Supply
- Full Read and Write Operation
- Low Power Dissipation
 - 8 mA Active Current
 - 50 μ A CMOS Standby Current
- Read Access Time 250 ns
 Dute Write 2 me
- Byte Write 3 ms
- Direct Microprocessor Control
 DATA Polling
 - DATA Polling
 - READ/BUSY Open Drain Output on TSOP
- High Reliability CMOS Technology
 - Endurance: 100,000 Cycles
 - Data Retention: 10 Years
- Low Voltage CMOS Compatible Inputs and Outputs
- JEDEC Approved Byte Wide Pinout
- Commercial and Industrial Temperature Ranges

Description

The AT28BV16 is a low-power, high-performance Electrically Erasable and Programmable Read Only Memory with easy to use features. The AT28BV16 is a 16K memory organized as 2,048 words by 8 bits. The device is manufactured with Atmel's reliable nonvolatile CMOS technology. *(continued)*

Pin Configurations

A2 🗆 6

A1 🗌 7

A0 🗆 8

1/00 🗖 9

1/01 🗖 10

1/02 🗖 11

GND 🗖 12

19 🗆 A10

18 🗆 🖂

17 1/07

16 🗆 I/O6

15 1/05

14 1/04

13 🛛 1/03

	gurations	TSOP
Pin Name	Function	Top View
A0 - A10	Addresses	
CE	Chip Enable	
ŌE	Output Enable	A9 3 26 1/07 A8 4 25 1/06
WE	Write Enable	NC 5 24 I/O5 WE 6 23 I/O4
I/O0 - I/O7	Data Inputs/Outputs	VCC 7 22 I/03 RDY/BUSY 8 21 GND
RDY/BUSY	Ready/Busy Output	NC 9 20 I/O2 A7 10 19 I/O1
NC	No Connect	A6 11 18 1/00 A5 12 17 A0
DC	Don't Connect	A4 13 16 A1 A3 14 ((15 A2
))
F	PDIP, SOIC Top View	PLCC Top View
A7 [] A6 [] A5 [] A4 [] A3 []	2 23 A8 3 22 A9 4 21 WE 5 20 OE	A6 5 6 28 A9 A4 7 27 NC

16K (2K x 8) *Battery-Voltage*[™] Parallel EEPROMs

AT28BV16

Rev. 0380B-10/98

δ

1/00 □ 13 <u>7 5 9 5 8 6 6 8</u> 21 □ 1/06

26 🗆 NC

25 🗆 OE

24 🗆 A10

23 CE

22 | 1/07

A3 🗆 8

A2 🗌 9

A1 🗌 10

A0 🗆 11

NC [12

The AT28BV16 is accessed like a static RAM for the read or write cycles without the need of external components. During a byte write, the address and data are latched internally, freeing the microprocessor address and data bus for other operations. Following the initiation of a write cycle, the device will go to a busy state and automatically clear and write the latched data using an internal control timer. The end of a write cycle can be determined by DATA polling of I/O_7 . Once the end of a write cycle has been detected, a new access for a read or a write can begin. The CMOS technology offers fast access times of 250 ns at low power dissipation. When the chip is deselected the standby current is less than 50 μ A.

Atmel's 28BV16 has additional features to ensure high quality and manufacturability. The device utilizes error correction internally for extended endurance and for improved data retention characteristics. An extra 32-bytes of EEPROM are available for device identification or tracking.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
All Input Voltages (including NC Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to V_{CC} + 0.6V
Voltage on $\overline{\text{OE}}$ and A9 with Respect to Ground0.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

Device Operation

READ: The AT28BV16 is accessed like a Static RAM. When \overrightarrow{CE} and \overrightarrow{OE} are low and \overrightarrow{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in a high impedance state whenever \overrightarrow{CE} or \overrightarrow{OE} is high. This dual line control gives designers increased flexibility in preventing bus contention.

BYTE WRITE: Writing data into the AT28BV16 is similar to writing into a Static RAM. A low pulse on the WE or CE input with OE high and CE or WE low (respectively) initiates a byte write. The address location is latched on the last falling edge of WE (or CE); the new data is latched on the first rising edge. Internally, the device performs a self-clear before write. Once a byte write has been started, it will automatically time itself to completion. Once a programming operation has been initiated and for the duration of t_{WC} , a read operation will effectively be a polling operation.

DATA POLLING: The AT28BV16 provides DATA POLL-ING to signal the completion of a write cycle. During a write cycle, an attempted read of the data being written results in the complement of that data for I/O_7 (the other outputs are indeterminate). When the write cycle is finished, true data appears on all outputs.

READY/BUSY (TSOP only): READY/BUSY is an open drain output; it is pulled low during the internal write cycle and released at the completion of the write cycle.

WRITE PROTECTION: Inadvertent writes to the device are protected against in the following ways: (a) V_{CC} sense—if V_{CC} is below 2.0V (typical) the write function is inhibited; (b) V_{CC} power on delay—once V_{CC} has reached 2.0V the device will automatically time out 5 ms (typical) before allowing a byte write; and (c) Write Inhibit—holding any one of \overrightarrow{OE} low, \overrightarrow{CE} high or \overrightarrow{WE} high inhibits byte write cycles.

DEVICE IDENTIFICATION: An extra 32-bytes of EEPROM memory are available to the user for device identification. By raising A9 to $12 \pm 0.5V$ and using address locations 7E0H to 7FFH the additional bytes may be written to or read from in the same manner as the regular memory array.

DC and AC Operating Range

		AT28BV16-25	AT28BV16-30
Operating Temperature (Case)	Com.	0°C - 70°C	0°C - 70°C
	Ind.	-40°C - 85°C	-40°C - 85°C
V _{CC} Power Supply		2.7V to 3.6V	2.7V to 3.6V

Operating Modes

Mode	CE	ŌE	WE	I/O
Read	V _{IL}	V _{IL}	V _{IH}	D _{OUT}
Write ⁽²⁾	V _{IL}	V _{IH}	V _{IL}	D _{IN}
Standby/Write Inhibit	V _{IH}	X ⁽¹⁾	Х	High Z
Write Inhibit	Х	Х	V _{IH}	
Write Inhibit	Х	V _{IL}	Х	
Output Disable	Х	V _{IH}	Х	High Z

Notes: 1. X can be V_{IL} or V_{IH} .

2. Refer to AC Programming Waveforms.

DC Characteristics

Symbol	Parameter	Condition	Min	Мах	Units
I _{LI}	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1.0V$		5	μA
I _{LO}	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}		5	μA
I _{SB}	V _{CC} Standby Current CMOS	$\overline{CE} = V_{CC} - 0.3V$ to $V_{CC} + 1.0V$		50	μA
I _{CC}	V _{CC} Active Current AC	$f = 5 \text{ MHz}; I_{OUT} = 0 \text{ mA}; CE = V_{IL}$		8	mA
V _{IL}	Input Low Voltage			0.6	V
V _{IH}	Input High Voltage		2.0		V
M		I _{OL} = 1 mA		0.3	V
V _{OL}	Output Low Voltage	$I_{OL} = 2 \text{ mA for RDY/BUSY}$		0.3	V
V _{OH}	Output High Voltage	I _{OH} = -100 μA	2.0		V

AC Read Characteristics

		AT28BV16-25		AT28BV16-30		
Symbol	Parameter	Min	Max	Min	Max	Units
t _{ACC}	Address to Output Delay		250		300	ns
$t_{CE}^{(1)}$	CE to Output Delay		250		300	ns
$t_{OE}^{(2)}$	OE to Output Delay		100		100	ns
$t_{DF}^{(3)(4)}$	CE or OE High to Output Float	0	55	0	55	ns
t _{OH}	Output Hold from OE, CE or Address, whichever occurred first	0		0		ns

AC Read Waveforms⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾

- Notes: 1. \overline{CE} may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC} .
 - OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} or by t_{ACC} t_{OE} after an address change without impact on t_{ACC}.
 - 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first (C_L = 5 pF).
 - 4. This parameter is characterized and is not 100% tested.

Input Test Waveforms and Measurement Level

Output Test Load

Pin Capacitance

f = 1 MHz, T = 25°C⁽¹⁾

Symbol	Тур	Max Units C		Conditions
C _{IN}	4	6	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	$V_{OUT} = 0V$

Note: 1. This parameter is characterized and is not 100% tested.

AC Write Characteristics

Symbol	Parameter	Min	Мах	Units
t _{AS} , t _{OES}	Address, OE Set-up Time	10		ns
t _{AH}	Address Hold Time	100		ns
t _{WP}	Write Pulse Width (\overline{WE} or \overline{CE})	150	1000	ns
t _{DS}	Data Set-up Time	100		ns
t _{DH} , t _{OEH}	Data, OE Hold Time	10		ns
t _{CS} , t _{CH}	\overline{CE} to \overline{WE} and \overline{WE} to \overline{CE} Set-up and Hold Time	0		ns
t _{WC}	Write Cycle Time		3.0	ms
t _{DB}	Time to Device Busy		50	ns

AC Write Waveforms

WE Controlled

CE Controlled

AT28BV16

Data Polling Characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Units
t _{DH}	Data Hold Time	10			ns
t _{OEH}	OE Hold Time	10			ns
t _{OE}	OE to Output Delay ⁽²⁾				ns
t _{WR}	Write Recovery Time	0			ns

Notes: 1. These parameters are characterized and not 100% tested.

2. See AC Characteristics.

Data Polling Waveforms

Ordering Information⁽¹⁾

	I _{cc} (mA)				
t _{ACC} (ns)	Active	Standby	Ordering Code	Package	Operation Range
250	8	0.05	AT28BV16-25TC	28T	Commercial
			AT28BV16-25JC	32J	(0°C to 70°C)
			AT28BV16-25PC	24P6	
			AT28BV16-25SC	24S	
	8	0.05	AT28BV16-25TI	28T	Industrial
			AT28BV16-25JI	32J	(-40°C to 85°C)
			AT28BV16-25PI	24P6	
			AT28BV16-25SI	24S	
300	8	0.05	AT28BV16-30TC	28T	Commercial
			AT28BV16-30JC	32J	(0°C to 70°C)
			AT28BV16-30PC	24P6	
			AT28BV16-30SC	24S	
-	8	0.05	AT28BV16-30TI	28T	Industrial
			AT28BV16-30JI	32J	(-40°C to 85°C)
			AT28BV16-30PI	24P6	
			AT28BV16-30SI	24S	

Note: 1. See Valid Part Number table below.

Valid Part Numbers

The following table lists standard Atmel products that can be ordered.

Device Numbers	Speed	Package and Temperature Combinations	
AT28BV16	25	JC, JI, PC, PI, SC, SI, TC, TI	
AT28BV16	30	JC, JI, PC, PI, SC, SI, TC, TI	

Die Products

Reference Section: Parallel EEPROM Die Products

	Package Type				
28T	28-Lead, Plastic Thin Small Outline Package (TSOP)				
32J	32-Lead, Plastic J-Leaded Chip Carrier (PLCC)				
24P6	24-Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)				
24S	24-Lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)				

AT28BV16

Packaging Information

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131

TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel U.K., Ltd. Coliseum Business Centre Riverside Way Camberley, Surrey GU15 3YL England TEL (44) 1276-686677 FAX (44) 1276-686697

Asia

Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon, Hong Kong TEL (852) 27219778 FAX (852) 27221369

Japan

Atmel Japan K.K. Tonetsu Shinkawa Bldg., 9F 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs

1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Rousset

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4 42 53 60 00 FAX (33) 4 42 53 60 01

Fax-on-Demand

North America: 1-(800) 292-8635 International: 1-(408) 441-0732

e-mail literature@atmel.com

Web Site http://www.atmel.com

BBS 1-(408) 436-4309

© Atmel Corporation 1998.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's website. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Marks bearing [®] and/or [™] are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

