### Features

- Active Mixer with Conversion Gain
- Integrated LO and IF Drivers
- Excellent Linearity
- Broadband 50  $\Omega$  Impedance on all Ports
- Low LO-RF Leakage
- Differential or Single Ended Inputs

### **Benefits**

- Small and Thin 16-pin SSOP Package with Exposed Paddle
- Few External Components
- Fully ESD Protected

## Application

- DCS/PCS/TDMA and CDMA2000 Transmitter
- Other Digital Communication Applications
- High Performance RF Instrumentation

## Description

The ATR0786 is a high linearity active mixer which is manufactured using Atmel's advanced Silicon Germanium technology for the use in a variety of high performance requiring RF systems such as digital communications.

This mixer features a frequency range of 1800 MHz to 2100 MHz. It operates from a single 5 V supply and provides 16 dB of conversion gain while requiring only 0 dBm input to the integrated LO driver. An IF and an LO amplifier is also included.

The ATR0786 incorporates internal matching on each RF, IF and LO port to enhance ease of use and to reduce the external components required. The RF and LO inputs can be driven differentially or single ended.

Figure 1. Block Diagram







High Linearity Active Transmit Mixer for 1800 MHz to 2100 MHz

# ATR0786

Rev. 4587B-SIGE-02/03





# **Pin Configuration**

Figure 2. Pinning TSSOP16

| _        |   |             |
|----------|---|-------------|
| Gnd⊏     | 1 | 16 🗖 Gnd    |
| Vcc⊏     | 2 | 15 🗖 Vcc    |
| Gnd⊑     | 3 | 14 🗖 Gnd    |
| RF_Out-⊑ | 4 | 13 🗖 LO_IN- |
| RF_Out+⊑ | 5 | 12 🛛 LO_IN+ |
| Gnd⊑     | 6 | 11 🗖 Gnd    |
| Vcc⊏     | 7 | 10 🗖 Vcc    |
| IF_IN-⊏  | 8 | 9 🗗 IF_IN+  |
| L        |   |             |

# **Pin Description**

| Pin    | Symbol  | Function                                                                                                     |
|--------|---------|--------------------------------------------------------------------------------------------------------------|
| 1      | GND     | Ground                                                                                                       |
| 2      | Vcc     | Supply voltage                                                                                               |
| 3      | GND     | Ground                                                                                                       |
| 4      | RF_OUT- | Negative RF output; nominal DC voltage is 2.3 V; (internally biased) input should be AC-<br>coupled          |
| 5      | RF_OUT+ | Positive RF output; nominal DC voltage is 2.3 V; (internally biased) input should be AC-coupled              |
| 6      | GND     | Ground                                                                                                       |
| 7      | Vcc     | Supply voltage                                                                                               |
| 8      | IF_IN-  | Negative IF input; nominal DC voltage is 2.3 V, provided through off chip inductors                          |
| 9      | IF_IN+  | Positive IF input; nominal DC voltage is 2.3 V, provided through off chip inductors                          |
| 10     | Vcc     | Supply voltage                                                                                               |
| 11     | GND     | Ground                                                                                                       |
| 12     | LO_IN+  | Negative local oscillator input; nominal DC voltage is 2.3 V; (internally biased) input should be AC-coupled |
| 13     | LO_IN-  | Positive local oscillator input; nominal DC voltage is 2.3 V; (internally biased) input should be AC-coupled |
| 14     | GND     | Ground                                                                                                       |
| 15     | Vcc     | Supply voltage                                                                                               |
| 16     | GND     | Ground                                                                                                       |
| Paddle |         | Device Ground and heat sink, requires good thermal path; RF reference plane                                  |

## **Absolute Maximum Ratings**

| Parameters                     | Symbol           | Value        | Unit |
|--------------------------------|------------------|--------------|------|
| Supply voltages, no RF applied | V <sub>cc</sub>  | -0.5 to +5.5 | V    |
| LO input signals               | LO_IN-; LO_IN+   | +10.0        | dBm  |
| IF input signals               | IF_IN-; IF_IN+   | +10.0        | dBm  |
| Operating case temperature     | T <sub>c</sub>   | -40 to +85   | °C   |
| Storage temperature            | T <sub>STG</sub> | -55 to +150  | °C   |

## **Thermal Resistance**

| Parameters       | Symbol            | Value | Unit |
|------------------|-------------------|-------|------|
| Junction ambient | R <sub>thJA</sub> | 25    | K/W  |

## **Electrical Characteristics**

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions:  $V_{CC}$  = +5.0 V,  $T_{amb}$  = 25°C;  $P_{LO}$  = 0 dBm; IF = 200 MHz;  $P_{IF}$  = -20 dBm

| No. | Parameters             | Test Conditions        | Pin | Symbol          | Min. | Тур. | Max. | Unit | Type* |
|-----|------------------------|------------------------|-----|-----------------|------|------|------|------|-------|
|     | General Performance    |                        |     |                 |      |      |      |      |       |
|     | Supply voltage         |                        |     | V <sub>cc</sub> | 4.75 | 5.0  | 5.25 | V    |       |
|     | Supply current         |                        |     | I <sub>CC</sub> |      | 200  |      | mA   |       |
|     | LO drive               | Matched to 50 $\Omega$ |     |                 | -3   | 0    | +3   | dBm  |       |
|     | LO, IF, RF return loss | Matched to 50 $\Omega$ |     |                 |      | 14   |      | dB   |       |

\*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

## RF Electrical Characteristics (1800 MHz to 2000 MHz)

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions:  $V_{CC}$  = +5.0 V,  $T_{amb}$  = 25°C;  $P_{LO}$  = 0 dBm; IF = 200 MHz;  $P_{IF}$  = -20 dBm

| No. | Parameters         | Test Conditions                               | Pin | Symbol          | Min. | Тур. | Max. | Unit | Type* |
|-----|--------------------|-----------------------------------------------|-----|-----------------|------|------|------|------|-------|
|     | Mixer RF Performan | се                                            |     |                 |      |      |      |      |       |
|     | RF frequency       |                                               |     | f <sub>RF</sub> | 1800 |      | 2000 | MHz  |       |
|     | LO frequency       |                                               |     | f <sub>LO</sub> | 1600 |      | 1800 | MHz  |       |
|     | IF frequency       |                                               |     | f <sub>IF</sub> | 30   | 200  | 400  | MHz  |       |
|     | Conversion gain    |                                               |     | G               | 15   | 17   | 19   | dB   |       |
|     | SSB noise figure   |                                               |     | NF              |      | 9.5  | 11.0 | dB   |       |
|     | Output IP3         | IF1 = IF2 =<br>-20 dBm/tone,<br>1 MHz spacing |     | OIP3            | 20   | 24   |      | dBm  |       |
|     | Output P1dB        |                                               |     | P1dB            | 8    | 11   |      | dBm  |       |
|     | Leakage (LO-RF)    |                                               |     |                 |      | -20  | -10  | dBm  |       |
|     | Leakage (LO-IF)    |                                               |     |                 |      | -45  | -35  | dBm  |       |

\*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter





## RF Electrical Characteristics (2000 MHz to 2100 MHz)

Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions:  $V_{CC}$  = +5.0 V,  $T_{amb}$  = 25°C;  $P_{LO}$  = 0 dBm; IF = 200 MHz;  $P_{IF}$  = -20 dBm

| No. | Parameters         | Test Conditions                               | Pin | Symbol          | Min. | Тур. | Max. | Unit | Type* |
|-----|--------------------|-----------------------------------------------|-----|-----------------|------|------|------|------|-------|
|     | Mixer RF Performan | ce                                            |     |                 |      |      |      |      |       |
|     | RF frequency       |                                               |     | f <sub>RF</sub> | 2000 |      | 2100 | MHz  |       |
|     | LO frequency       |                                               |     | f <sub>LO</sub> | 1800 |      | 2000 | MHz  |       |
|     | IF frequency       |                                               |     | f <sub>IF</sub> | 30   | 200  | 400  | MHz  |       |
|     | Conversion gain    |                                               |     | G               | 13   | 16   | 18   | dB   |       |
|     | SSB noise figure   |                                               |     | NF              |      | 9.5  | 11.0 | dB   |       |
|     | Output IP3         | IF1 = IF2 =<br>-20 dBm/tone,<br>1 MHz spacing |     | OIP3            | 17   | 21   |      | dBm  |       |
|     | Output P1dB        |                                               |     | P1dB            | 6    | 9    |      | dBm  |       |
|     | Leakage (LO-RF)    |                                               |     |                 |      | -20  | -10  | dBm  |       |
|     | Leakage (LO-IF)    |                                               |     |                 |      | -45  | -35  | dBm  |       |

\*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

### **Typical Performance**





**ATR0786** 

Figure 4. Output IP3 versus Frequency + Temperature



Figure 5. Output IP3 versus Frequency + LO Drive



Figure 6. Conversion Gain versus Frequency + LO Drive







Figure 7. Leakages versus Frequency



Figure 8. Noise Figure versus Frequency + Temperature



Figure 9. RF and LO Return Loss versus Frequency



6

**ATR0786** 

Figure 10. Output P1dB versus Frequency + Temperature



Figure 11. IF Return Loss versus Frequency



Figure 12. Output P1dB versus Frequency + LO Drive







### Figure 13. Demo Board Schematic



### Bill of Material of Demo Board

| Parameters                 | Test Conditions       | Pin                        | Symbol       | Min.   | Тур.         |
|----------------------------|-----------------------|----------------------------|--------------|--------|--------------|
| Highly linear active mixer |                       | Atmel                      | ATR0786      |        | 16-pin TSSOP |
| Capacitor                  | C7, C9                |                            |              | 100 pF | 0603         |
| Capacitor                  | C1, C3, C20, C21, C30 |                            |              | 6.8 pF | 0603         |
| Capacitor                  | C11, C12              |                            |              | 4.7 pF | 0603         |
| Capacitor                  | C4, C5                |                            |              | 3.3 pF | 0603         |
| Inductor                   | Lfil                  | Würth Elektronik           | 74476401     | 1 µH   | 1210         |
| Capacitor                  | C6                    |                            |              | 1.2 pF | 0603         |
| Transformer                | T9, T11               | Panasonic                  | EHF-FD1619   |        |              |
| Transformer                | T2                    | Mini-Circuits <sup>®</sup> | TC1-1        |        |              |
| RF connector               |                       | Johnson<br>Components      | 142-0701-851 |        | SMA          |

Note: 1. Other sizes are possible.

### Figure 14. Demo Test Board







### **Recommended Package Footprint**

- Notes: 1. Only ground signal traces are allowed directly under the package
  - 2. Primary dimensions are in millimeter alternate dimensions are in inches





Plugging of the ground vias under the heat slug is also recommended to avoid soldering problems.

## **Ordering Information**

| Extended Type Number | Package | Remarks                                |
|----------------------|---------|----------------------------------------|
| ATR0786              | TSSOP16 | $5.0 \text{ mm} \times 6.4 \text{ mm}$ |

## **Package Information**



Drawing-No.: 6.543-5079.01-4 Issue: 1; 10.07.01





### **Atmel Headquarters**

*Corporate Headquarters* 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

#### Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

### Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

### Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

### **Atmel Operations**

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

### **Microcontrollers**

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

#### **RF**/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

### *Biometrics/Imaging/Hi-Rel MPU/*

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

*e-mail* literature@atmel.com

Web Site http://www.atmel.com

#### © Atmel Corporation 2003.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel<sup>®</sup> is the registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

