Signetics

Linear Products

DESCRIPTION

The AU2902 consists of four independent, high-gain, internally frequencycompensated operational amplifiers designed specifically to operate from a single power supply over a wide range of voltages.

UNIQUE FEATURES

In the linear mode, the input commonmode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.

The unity gain crossover frequency and the input bias current are temperaturecompensated.

AU2902 Low Power Quad Operational Amplifier

Preliminary Specification

FEATURES

- Internally frequency-compensated for unity gain
- Large DC voltage gain: 100dB
- Wide bandwidth (unity gain): 1MHz (temperature-compensated)
- Wide power supply range Single supply: $3V_{DC}$ to $30V_{DC}$ or dual supplies: ± 1.5V_{DC} to ± 15V_{DC}
- Very low supply current drain: essentially independent of supply voltage (1mW/op amp at +5V_{DC})
- Low input bias current: 45nA_{DC} (temperature-compensated)
- Low input offset voltage: 2mV_{DC} and offset current: 5nA_{DC}
- Differential input voltage range equal to the power supply voltage
- Large output voltage: $0V_{DC}$ to V_{CC} 1.5 V_{DC} swing

PIN CONFIGURATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
14-Pin Plastic DIP	-40°C to +125°C	AU2902N
14-Pin Plastic SO	-40°C to +125°C	AU2902D

Preliminary Specification

Low Power Quad Operational Amplifier

ABSOLUTE MAXIMUM RATINGS

SYMBOL	SYMBOL PARAMETER		UNIT	
V _{CC}	Supply voltage	32 or ± 16	V _{DC}	
V _{IN}	Differential input voltage	32	V _{DC}	
VIN	Input voltage	-0.3 to +32	V _{DC}	
P _{DMAX}	Maximum power dissipation, T _A = 25°C (still-air) ¹ N package D package	1420 1040	mW mW	
	Output short-circuit to GND one amplifier ² V _{CC} < 15V _{DC} and T _A = 25°C	Continuous		
l _{IN}	Input current (VIN < -0.3V) ³	50	mA	
T _A	Operating ambient temperature range AU2902	-40 to +125	°C	
TSTG	Storage temperature range	-65 to +150	°C	
TSOLD	Lead soldering temperature (10sec max)	300	°C	

NOTES:

1. Derate above 25°C, at the following rates:

N package at 11.4mW/°C

D package at 8.3mW/°C

2. Short-circuits from the output to V_{CC}+ can cause excessive heating and eventual destruction. The maximum output current is approximately 40mA, independent of the magnitude of V_{CC}. At values of supply voltage in excess of + 15V_{DC} continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction.

3. This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input bias clamps. In addition, there is also lateral NPN parasitic transistor action on the IC chip. This action can cause the output voltages of the op amps to go to the V+ rail (or to ground for a large overdrive) during the time that the input is driven negative.

AU2902

Low Power Quad Operational Amplifier

AU2902

SYMBOL	PARAMETER	TEST CONDITIONS	AU2902			
			Min	Тур	Max	UNIT
V _{OS}		$R_{S} = 0\Omega$		± 2	± 7	mV
	Offset voltage ¹	$R_{S} = 0\Omega$, over temp.			±9	m٧
ΔV _{OS} /ΔT	Temperature drift	$R_{S} = 0\Omega$, over temp.		7		μV/°C
BIAS	Input current ²	1 _{IN} (+) or 1 _{IN} (-)		45	250	nA
		$I_{IN}(+)$ or $I_{IN}(-)$, over temp.		40	500	nA
$\Delta I_{BIAS} / \Delta T$	Temperature drift	Over temp.		50		pA/°C
	Offset current	$l_{IN}(+) - l_{IN}(-)$		± 5	± 50	nA
los		$I_{IN}(+) - I_{IN}(-)$, over temp.			± 150	nA
$\Delta I_{OS} / \Delta T$	Temperature drift	Over temp.		10		pA/°C
	Common-mode voltage range ³	V _{CC} ≤ 30V	0		V _{CC} - 1.5	v
VCM		$V_{CC} \leq 30V$, over temp.	0		V _{CC} - 2	v
CMRR	Common-mode rejection ratio	V _{CC} = 30V	65	70		dB
Vout	Output voltage swing	$R_L = 2k\Omega$, $V_{CC} = 30V$, over temp.	26			v
V _{OH}	Output voltage high	$R_L \ge 10k\Omega, V_{CC} = 30V,$ over temp.	27	28		v
V _{OL}	Output voltage low	$R_L \le 10k\Omega$, $V_{CC} = 5V$, over temp.		5	20	mV
I _{CC}	Supply current	$R_L = \infty$, $V_{CC} = 30V$, over temp.		1.5	3	mA
		$R_{L} = \infty, V_{CC} = 5V,$ over temp.		0.7	1.2	mA
			25	100		V/mV
	Large-signal voltage gain	V_{CC} = 15V (for large V _O swing), $R_L \ge 2k\Omega$, over temp.	15			V/mV
	Amplifier-to-amplifier coupling ⁵	f = 1kHz to 20kHz, input referred		-120		dB
PSRR	Power supply rejection ratio	$R_{S} = 0\Omega$	65	100		dB
lout	Output current Source	V_{IN} + = + 1V, V_{IN} = 0V, V_{CC} = 15V	20	40		mA
		V_{IN} + = + 1V, V_{IN} - = 0V, V_{CC} = 15V, over temp.	10	20		mA
	Sink	V_{IN} = + 1V, V_{IN} + = 0V, V + = 15V	10	20		mA
		$V_{IN}^{-} = + 1V, V_{IN}^{+} = 0V,$ $V_{CC}^{-} = 15V, \text{ over temp.}$	5	8		mA
		V_{IN} = + 1V, V_{IN} + = 0V, V_0 = 200mV	12	50		μA
sc	Short-circuit current4		10	40	60	mA
VDIFF	Differential input voltage ³			1	V _{CC}	V
GBW	Unity gain bandwidth			1	1	MHz
SR	Slew rate			0.3		V/µs
V _{NOISE}	Input noise voltage	f = 1kHz		40		nV/√ł

DC ELECTRICAL CHARACTERISTICS V_{CC} = 5V, T_A = 25°C, unless otherwise specified.

See notes on next page.

Low Power Quad Operational Amplifier

AU2902

NOTES:

- 1. $V_0 \cong 1.4V_{DC}$, $R_S = 0\Omega$ with V_{CC} from 5V to 30V and over full input common-mode range (0V_{DC}+ to V_{CC} 1.5V).
- 2. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
- 3. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V_{CC} -1.5, but either or both inputs can go to +32V without damage.
- 4. Short-circuits from the output to V_{CC} can cause excessive heating and eventual destruction. The maximum output current is approximately 40mA independent of the magnitude of V_{CC}. At values of supply voltage in excess of + 15V_{DC}, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
- 5. Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of coupling increases at higher frequencies.

EQUIVALENT SCHEMATIC

AU2902

OP055305

Low Power Quad Operational Amplifier

OP055115

Output Characteristics Current Sourcing **Supply Current Current Limiting** 90 V+ 80 Q DRAIN (made) 70 (mAdc) V2 - OUTPUT VOLTAGE REFERENCED TO V⁺ (VDC) V2 60 X CURRENT 50 SUPPLY CURRENT 10 40 TA = 0 °C to + 125 °C OUTPUT -30 NDEPENDENT OF V 20 TA = +25°C - 55 °C TA 10 0 0 - 35 - 55 15 5 25 45 0 10 20 30 40 65 85 105 125 SUPPLY VOLTAGE (VDC) 0.001 0.01 0.1 10 100 TEMPERATURE ("C) 1 (mADC) IO+ - OUTPUT SOURCE CURRENT Output Characteristics Current Sinking Open-Loop Frequency Response Voltage Gain 140 160 10 V. 10M = +5 Vpc v+ 120 0.1µF + 15 VpC L = 20K v OUTPUT VOLTAGE (VDC) VIN g 120 +30 V+/2 100 GAIN (qp) $RL = 2K\Omega$ 80 VOLTAGE G **VOLTAGE GAIN** -60 A S 0 - 0, 10 40 40 ٧c -10 14 20 55 TA °c 0.01 0 0.001 0.01 0.1 1 10 0 10 20 30 0 IO - OUTPUT SINK CURRENT (MADC) SUPPLY VOLTAGE (Vdc) 100 1K 10K 10 1000 186 10M 1 FREQUENCY (Hz) Large-Signal Frequency Response Voltage-Follower Pulse Response Input Voltage Range 20 15 OUTPUT VOLTAGE (V) 15 VDC g 3 RL 2 28 15Vp (d-da) DNIMS 0.1µF 1K VOLTAGE (± VDC) 2 7.5Vnc ₹2K EGATIVE OUTPUT 10 - INPUT INPUT VOLTAGE (V) 2 -NIA ~ 4 0 20 ٥ 5 10 15 10 30 0 0 UPPLY VOLTAGE (= VOC) POWER TIME (US) 10K 100 FREQUENCY (Hz) 18 1M V+ OR V-

TYPICAL PERFORMANCE CHARACTERISTICS

OP055205

Low Power Quad Operational Amplifier

AU2902

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

TYPICAL APPLICATIONS

