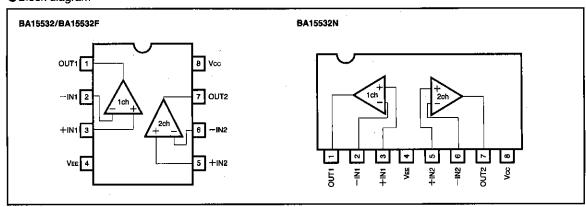
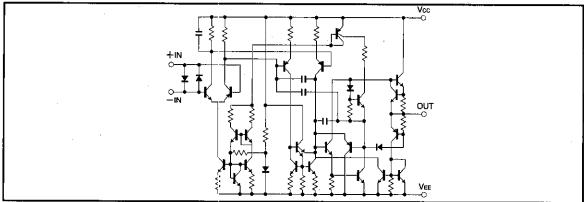
Dual high slew rate, low noise operational amplifier BA15532/BA15532F/BA15532N

The BA15532, BA15532F, and BA15532N are low-noise dual operational amplifiers designed especially for applications involving high-grade audio equipment. Because they feature low noise, a wide band width, and high power output, these products can also be used in measuring instruments and control circuits. The following packages are available: 8-pin DIP (BA15532), 8-pin SOP (BA15532F), and 8-pin SIP (BA15532N).


Features

1) High output current capacity.


3) Low noise.

2) High slew rate.

Block diagram

Internal circuit configuration diagram

●Absolute maximum ratings (Ta=25℃)

Parameter	Cumbal		11.24		
	Symbol	BA15532	BA15532F	BA15532N	Unit
Power supply voltage	Vcc	±21	±21	±21	V
Power dissipation	Pd	600*	550*	900*	mW
Differential input voltage	VID	±0.5	±0.5	±0.5	٧
In-phase input voltage	Vı	-Vcc~Vcc	-Vcc~Vcc	−Vcc~Vcc	٧
Operating temperature	Topr	-20~75	-20~75	−20~75	Ç
Storage temperature	Tstg	−55~125	−55 ~125	-55~125	ů

* For Pd values, please see Pd characteristic diagram.

Values are those when BA15532F is mounted on a glass epoxy PCB (50 mm x 50 mm x 1.6 mm).

● Electrical characteristics (unless otherwise noted, Ta=25°C, Vcc=+15V, VEE=-15V)

Parameter	Symbol	Mln.	Тур.	Max.	Unit	Conditions	
Input offset voltage	Vio	-	0.5	4	mV	Rs=50Ω, R∟≧10kΩ	
Input offset current	lio		10	150	nA	R∟≧10kΩ	
Input bias current	lв	_	200	800	nA	R∟≧10kΩ	
High amplitude voltage gain	Αv	80	94	_	dB	Rι≥600Ω, Vo=±10V	
Common mode input voltage range	Vicм	±12	±13	_	V	RL≧10kΩ	
Maximum output voltage	Vом	±12	±13	_	V	R∟≧600 Ω	
Maximum output voltage	Vом	±15	±16	_	V	RL≧600Ω, Vcc=18V, VEE=-18V	
Common mode rejection ratio	CMRR	70	100	-	dB	RL≧10kΩ	
Power supply voltage rejection ratio	PSRR	80	100	_	dB	Rs=50Ω, Rι≧10kΩ	
Quiescent circuit current	la	_	8	16	mA	R _L =∞, on All Op - Amps	
Output short-circuit current	los	_	38		mA	-	
Slew rate	S. R.	_	8	_	V/µs	Av=1, RL=600Ω, CL=100pF	
Voltage gain band width	GBW	_	20	_	MHz	CL=100pF, RL=600Ω, f=10kHz	
Maximum frequency	fτ	_	7	_	MHz	_	
Input noise voltage	Vn	_	0.7	1.5	μV	RIAA, Rs=100Ω, BW=20Hz~30kHz	
Channel separation	CS		110	_	dB	RIAA, f=1kHz	

Electrical characteristic curves

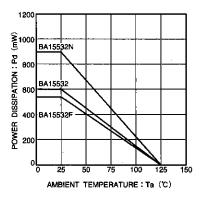


Fig.1 Power dissipation - ambient temperature characteristic

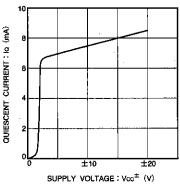


Fig.2 Quiescent current - power supply voltage characteristic

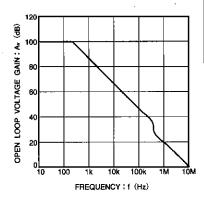


Fig.3 Open loop voltage gain - frequency characteristic

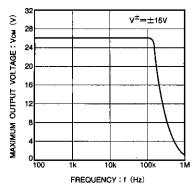


Fig.4 Maximum output voltage - frequency characteristic

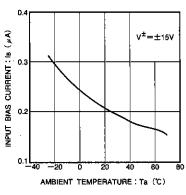


Fig.5 Input bias current - ambient temperature characteristic

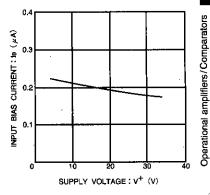


Fig.6 Input bias current - power supply voltage characteristic

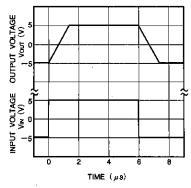


Fig.7 Output response characteristic

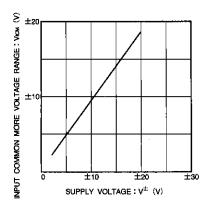


Fig.8 Common mode input voltage - power supply voltage characteristic

ROHM

Operation notes

Unused circuit connections
 If there are any circuits which are not being used, we recommend making connections as shown in Figure 9, with the non-inverted input pin connected to the potential within the in-phase input voltage range (Vicin).

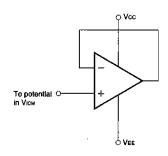
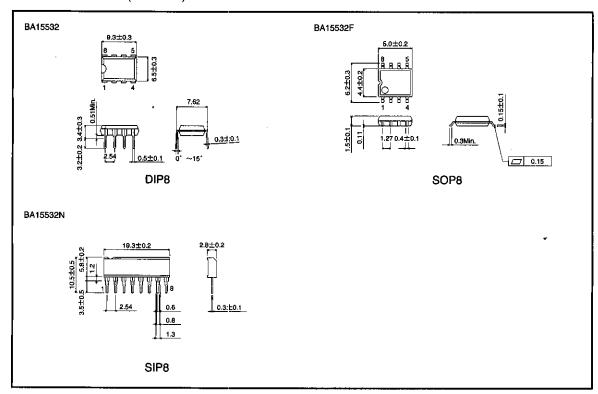



Fig.9 Unused circuit connections

●External dimensions (Units: mm)

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

Notes when exporting

- It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
- Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.