Audio ICs

Dual preamplifier BA328 / BA328F

The BA328 and BA328F are monolithic, dual-preamplifier ICs designed for car-audio systems. They require few external components and allow compact set designs while reducing the number of assembly processes.

ApplicationsCar and home stereos

Features

1) Low noise.

- 2) Wide operating power supply voltage range.
- Built-in bias circuit minimizes the number of external components required.
- 4) High open loop gain.
- 5) Good channel balance.

•Absolute maximum ratings (Ta = 25° C)

Parameter		Symbol	Limits	Unit
Power supply voltage		Vcc	18	V
Power dissipation	BA328	F.a.	900*1	
	BA328F	Pd	500* ²	mW
Operating temperature		Topr	-25~+75	ĉ
Storage temperature		Tstg	-55~+125	ĉ

*1 Reduced by 9.0mW for each increase in Ta of 1°C over 25°C.

*2 Reduced by 5.0mW for each increase in Ta of 1°C over 25°C. (When mounted on a 70mm×70mm×1.6mm glass epoxy board)

• Recommended operating voltage range (Ta = 25° C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	6	8	16	V

•Electrical characteristics (unless otherwise noted, Ta = 25° C, V_{CC} = 8V, f= 1kHz, R_L = $10k\Omega$ and R_E = 100Ω)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current	la	2	5	8	mA	VIN=0Vrms
Open loop voltage gain	Gvo	65	80	-	dB	$V_{OUT}=0.3V_{ms}, R_E=0\Omega$
Maximum output voltage	Vом	1.0	1.5	-	Vrms	THD=1%
Input resistance	Rin	50	_	_	kΩ	_
Total harmonic distortion	THD	-	0.1	0.3	%	Vout=0.3Vrms
Input conversion noise voltage	V _{NIN}	_	1.2	2.0	μ Vrms	R_g =2.2k Ω BPF (30Hz~20kHz)
Crosstalk level	СТ	_	-65	-50	dB	Other channel Vout=0.3Vrms, R_g =2.2k Ω
Channel balance	СВ	_	0	1.5	dB	Vout=0.3Vms

Measurement circuit

Attached components

CIN: input coupling capacitor

The recommended value is $10\mu F$. If the value of the capacitor is too small the characteristics at power on will deteriorate.

Co: Output coupling capacitor

No particular requirements. A value of 4.7 to $22\mu\text{F}$ is appropriate.

CE: AC signal bypass capacitor

The recommended value is 47μ F. This capacitor sets the bass gain.

If a capacitor larger than the recommended value is used, the bass-region gain will increase, but the characteristics at power on will deteriorate. If the value of the capacitor is made smaller than the recommended value, the bass-region gain will be lower, but the power on characteristics will improve.

C1 and R1 Ripple filter components

The larger R₁ and C₁ are made, the better the ripple rejection ratio will be. However, if R₁ is made too large, the voltage drop that results will influence the maximum output. Feedback pin: The closed loop voltage gain is roughly Z_{nt}/R_{E} .

Item	SW1	SW2 SW2'	SW₃ SW₃'	SW4 SW4'	SW₅ SW₅'
la	OFF	ON	OFF	2	1
Gvo	ON	ON	ON	1	2
Vом	ON	ON	OFF	1	1
RIN	ON	ON • OFF	OFF	1	1
THD	ON	ON	OFF	1	1
VNIN	ON	ON	OFF	2	1
СТ	ON	ON	OFF	2(1)	1
СВ	ON	ON	OFF	1	1

Note: Bandpass filter used (30Hz to 20kHz).

Audio ICs

BA328 / BA328F

Operation notes

Determining the DC output voltage (see Fig. 3) The DC output voltage is determined as follows:

 $V_{ODC} = (Rnt \times Io) + V_{P2} (7)$

VP2 (7): DC voltage on pin 2 (7)

Rnt: DC feedback resistance

lo is set internally.

In other words, pin 7 is a fixed current source, and when that current flows into the feedback pin, the voltage generated becomes the DC voltage. V_{P2} (7) is fixed at about 0.8V. When V_{ODC} is about 1/2 the power supply voltage, V_{OM} is maximized.

Io is fixed regardless of the power supply voltage. Therefore, it is possible to set the DC feedback resistance after considering the required dynamic range and the minimum voltage applied to pin 4 (Vcc).

The recommended value is $100k\Omega$ for a power supply voltage of 6V to 16V.

Audio ICs

Electrical characteristics curves

External dimensions (Units: mm)

