Speaker / headphone switch power amplifier BA5210FS

The BA5210FS is a power amplifier with a built-in monaural speaker/stereo headphone switch. The speaker drive is BTL for large output, and when the headphones are connected, the "center-amp" design means that coupling is not required. This significantly reduces the number of external components required, and makes this IC ideal for compact sets that have high component density. Mute and standby functions are provided, and direct microprocessor control is possible.

Applications

Notebook computers, electronic books, portable CD players, video cameras with built-in monitors, LCD TVs, radios, and electronic instruments

Features

- 1) Built-in BTL/stereo switch circuit.
- 2) Mute function.
- 3) Standby function.

Block diagram

5) Low current dissipation and good sound quality.

•Absolute maximum ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	6	V
Power dissipation	Pd	650 [*]	mW
Operating temperature	Topr	$-10 \sim +60$	Ĉ
Storage temperature	Tstg	-55~+125	ĉ

* When mounted on a 90mm x 50mm x 1.6mm glass epoxy board, reduced by 6.5mW for each increase in Ta of 1°C over 25°C.

• Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	2.5~6.0	V

Pin descriptions

Pin No.	Pin name	Function	Equivalent circuit		
1	No-signal DC voltage (V) 1 PWR-GND 0				
2	OUT-R	Power amplifier and system			
3	OUT-L	This has low output impedance during operation, so if it is shorted to Vcc or GND the IC will probably be destroyed.			
16	OUT-C	1.8	PWR-GND		
4	Vcc	Power supply pin 3.3			
5	ST/BTL	Stereo/BTL switch pin The threshold voltage is approximately 0.2 x Vcc. BTL mode when high, and stereo mode when low. 0.9 (BTL) 0 (stereo)	ST/BTL ST/BTL		
6	FILTER	Ripple filter During operation a voltage close to the power supply voltage is generated. The output impedance is low, so if it is shorted to GND or low impedance power sources, a large current will flow and destroy the IC.	FILTER 270 Vcc		
7	BIAS—IN	Bias amplifier input This pin sets the DC operating point for all amplifiers on the IC. 1.8	BIAS-IN 56k PRE-GND		

Pin No.	Pin name	Function o-signal DC voltage (V)	Equivalent circuit
8	STBY	Standby control pin The more slowly that the voltage rises on this pin, the lower the noise that occurs when standby is released. 2.6 (E1=3.3V)	STBY FRE-GND
9	MUTE	Mute control pin The more slowly that the voltage rises and falls on this pin, the lower the noise that occurs when mute is turned on and off. 1.6 (E2=3.3V) 0 (E2=0V)	MUTE PRE-GND
10	BIAS—OUT	Bias amplifier output This is the impedance conversion point for the operating point voltage set by BIAS-IN for supply to the other amplifiers. The output impedance is low, so if it is shorted to Vcc or GND a large current will flow, and the IC will probably be destroyed.	Vcc Vcc PRE-GND
		1.8) BIAS-OUT
11	PRE-GND	Small signal GND	
		0	
12	IN-L	Input pin	
14	IN-R	1.8	BIAS-OUT
13	NF-L	Feedback pin	
15	NF-R	1	PRE-GND
		1.8	

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions		
Circuit current 1	lcc1	2	8	14	mA	V _{IN} =0V _{rms} , R ∟=∞		
Circuit current 2	lcc2	2	11	22	mA	$V_{IN}=0V_{rms}$, R L=8 Ω		
Voltage gain 1	Gv1	32	35	38	dB			
Voltage gain 2	Gv2	9	12	15	dB	Stereo operation, $R_L = 100 + 16\Omega$, measured at end of 16Ω		
Rated output power 1	Ρουτ1	350	450	_	mW	THD=10%		
Rated output power 2	Ρουτ2	1.2	1.7	_	mW	Measured at end of 16Ω	Stereo operation	
Maximum output voltage	Vом	0.9	1.2	_	Vrms	Measured between L / R output pin and center amplifier output	R∟=100 + 16Ω, THD=10%	
Total harmonic distortion 1	THD1	—	0.5	1.0	%	Po=50mW		
Total harmonic distortion 2	THD2	_	0.2	0.6	%	Stereo operation, $RL=100 + 16\Omega$, measured between L / R output pin and center amplifier output $Vo=0.5V_{rms}$		
Output noise voltage	VNO	_	50	100	μVrms	Stereo operation, $R_L=100 + 16\Omega$, $R_g=0\Omega$, measured between L / R output pin and center amplifier output		
Ripple rejection ratio	RR	58	65	_	dB	Stereo operation, $R_L = 100 + 16\Omega$, $V_{RR} = -20 dBm$, $f_{RR} = 1 kHz$, $Rg = 0\Omega$, measured at end of 16Ω		
Channel separation	CS	55	65	_	dB	Stereo operation, $R_L=100 + 16\Omega$, Vo =0dBm, at end of 100 + 16 Ω		
Input resistance	RIN	8	10	12	kΩ			
Standby release threshold	VthSA	-	1.5	2.0	v	Stereo operation, $RL=100 + 16\Omega$, measured at end of 16Ω , $GV2 > 6dB$		
Standby threshold	VthSB	0.2	0.6	-	v	$V_{IN}=0V_{rms}, R_L=8\Omega, Icc2 < 10\mu A$		
Mute on threshold	VthMA	_	0.8	2.0	v	Stereo operation, R∟=100 + 16Ω, VιΝ =−25dBm, Vo <−80dB (end of 16Ω)		
Mute off threshold	VthMB	0.2	0.7	_	V	Stereo operation, R∟=100 + 16Ω, measured at end of 16Ω, GV2 > 6dB		
Standby pin source current	IssS	-	30	100	μA			
Mute pin source current	IssM	—	20	100	μA			

Measurement circuit

Fig. 1

Application example

MUTE: mute on when H, off when L

Operation notes

A characteristic of this IC is that if it is used with a supply voltage that is less than the recommended value (2.5V), the OUT-R offset increases. When using the IC with a BTL 8 Ω load, if the voltage drops, the supply current will increase accompanied by an increase in power supply impedance, which can lead to low-frequency blocking oscillation. For this reason, we recommend that you use a low-voltage detection circuit that puts the IC in the standby state when the voltage drops below 2.5V.

Electrical characteristics curves

External dimensions (Units: mm)

