High-output dual power amplifier BA5417

The BA5417 is a 6 to 15V-compatible dual power amplifier developed for use radio cassette players. It is equipped with standby switching functions for excellent total harmonic distortion and other basic characteristics.

Applications

Radio cassette players

Features

1) High output.

Pout = 2.8W (Vcc = 9V, RL
$$3\Omega$$
, THD = 10%)
Pout = 5.0W (Vcc = 12V, RL 3Ω , THD = 10%)

2) Excellent audio quality

$$THD=0.1\%~(f=1kHz,~P_0=0.5W)$$

$$V_{\text{NO}} = 0.3 \text{mVrms (Rg} = 10 \text{k}\Omega)$$

$$RR = 55dB (f_{RR} = 100Hz)$$

- 3) Wide supply voltage operating range (Vcc = 6.0V to 15.0V).
- 4) Switching noise ("pop" noise) generated when the power is switched on and off is small.
- Ripple mixing when motor starts has been prevented.
- 6) Built-in thermal shutdown circuit.
- Built-in standby switch. Output is not influenced by the standby pin voltage.
- 8) Soft clipping.

■Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	20*1	V
Power dissipation	Pd	15* ²	w
Operating temperature	Topr	−20~+75	°C
Storage temperature Tstg		−55∼ +150	°

^{*1} Must be within standby values.

• Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	6.0~15.0	V

^{*2} Ta=75℃ (when using infinite heatsink)

Block diagram

• Electrical characteristics (unless otherwise noted, Ta = 25 °C, Vcc = 9.0V, RL = 3 Ω , RF = 120 Ω , Rg = 600 Ω , f = 1kHz)

Parame	ter	Symbol	Min.	Тур.	Max.	Unit	Coniditions
Quiescent curre	nt	lo	_	22	45	mA	V _{IN} =0Vrms
Rated output vo	Itage 1	Роит1	2.2	2.8	_	w	TDH=10%
Rated output vo	Itage 2	Роит2	4.0	5.0	_	w	TDH=10%, Vcc=12V
Closed-loop vol	tage gain	Gvc	43	45	47	dB	_
Output noise vo	Itage	VNO	_	0.3	1.0	mVrms	Rg=10kΩ, DIN AUDIO
Total harmonic	distortion	THD	_	0.1	1.0	%	Р _О Т=0.5W
Ripple rejection		RR	42	55	_	dB	frR=100Hz, VRR=-10dBm
Crosstalk		СТ	48	65	_	dB	Vo=0dBm
Circuit current (with standby st	witch off)	loff	_	0	20	μΑ	_
Standby pin curre	nt when on	Isın	_	0.15	0.4	mA	V _{STBY} =V _{CC}
Standby pin control voltage	Activated	Vsтн	3.5	_	_	V	_
	Not activated	VstL	_	_	1.2	V	_

Measurement circuit

*1 Vstey=3.5V~Vcc

Fig.1

Electrical characteristic curves

POWER SUPPLY VOLTAGE: V∞ (V) Fig.2 Rated output power vs.

power supply voltage

Fig.3 Total harmonic distortion vs. output power

POWER SUPPLY VOLTAGE: V∞ (V)
Fig.4 Output noise voltage vs.
power supply voltage

FREQUENCY: f (Hz)
Fig.5 Crosstalk vs. frequency

Fig.6 Ripple rejection vs. frequency

Fig.7 Quiescent standby pin supply current vs. power supply voltage

POWER SUPPLY VOLTAGE: Vcc (V)
Fig.8 Maximum power dissipation vs.
power supply voltage

AMBIENT TEMPERATURE: Ta (°C)
Fig.9 Thermal derating curve

Fig.10 Power dissipation vs. power supply voltage $(RL=4\Omega)$

Fig.11 Power dissipation vs. power supply voltage $(RL=8\Omega)$

External dimensions (Units: mm)

