6V/330mW single-channel power amplifier BA546

The BA546 is a monolithic power amplifier designed for use in portable radios, tape recorders and interphones. With a 6V power supply, it has a rated output of 330mW into an 8Ω load (THD = 10%), and a maximum output of 550mW. It comes in a compact 9-pin SIP package with no heatsink fins.

Applications

Portable radios, cassette recorders, and interphones.

Features

- 1) High output. POUT = 330mW (Vcc = 6V and an 8Ω load (THD = 10%)). See Fig. 2.
- Good low voltage characteristics. Begins operating at less than 2V (see Fig. 1).
- 3) 9-pin SIP package; around the same size as a preamplifier.
- 4) Pin compatible with the Rohm BA526 and BA527 power ICs. Choose to suit your application.
- 5) Low current consumption (4.8mA typ.).

Block diagram

398

ROHM

•Absolute maximum ratings (Ta = 25°)

Parameter	Symbol	Limits	Unit	
Supply voltage	Vcc	12	v	
Power dissipation	Pd	950*	mW	
Operating temperature	Topr	-30~75	J.	
Storage temperature	Tstg	-40~125	С С	

* Reduced by 9.5mW for each increase in Ta of 1°C over 25°C.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement Circuit
Quiescent circuit current	lo	_	4.8	7	mA	V _{IN} ≕0V _{rma}	F ig.10
Closed-circuit voltage gain	Gvc	47	50	53	dB	R _{NF} =68Ω	Fig.10
Rated output	Ролт	250	330	-	mW	THD=10%	Fig.10
Total harmonic distortion	THD	_	1.1	2.5	%	Po=100mW	Fig.10
Output noise voltage	VNO	_	1.0	2.5	mVrms	Rg=10kΩ	Fig.10
Input resistance	RIN	_	25		kΩ	_	Fig.10

Low-frequency amplifiers

Electrical characteristics curves

400

ROHM

BA546

Measurement circuit

External components (see Fig. 10) C1 : input coupling capacitor

The recommended value is $10 \ \mu$ F. This capacitor and R_{IN} determine the bass cutoff frequency float

for the input stage according to the following formula :
$$f_{LC1} = -\frac{1}{(Hz)}$$

$$2 \pi C_1 R_{IN}$$

If the capacitance value of C₁ is too small, the sig-
nal source reactance will increase, and cause the
noise to increase and fLC1 will become higher.
Conversely, if it is too large, the startup time after
power is applied will be longer, and if the poten-
tiometer is adjusted while the capacitor is charg-

- tiometer is adjusted while the capacitor is charging, the charging current will flow through the slider current, and cause noise.
 C₂: DC cutoff resistor for the feedback circuit
 - The recommended value is 47 μ F. This capacitor and RNF determine feedback circuit bass cutoff frequency fLC2. fLC2 is given by the following formula :

$$f_{LC2} = \frac{1}{2 \pi C_2 \mathbf{R}_{NF}} \quad (Hz)$$

Fig. 7 illustrates how changing C_2 varies the bass characteristics.

C₃: ripple filter capacitor

The recommended value is 47 μ F.

C4: Phase compensation capacitor This capacitor determines the treble cutoff frequency fHc. fHc is given by the following formula:

$$f_{HC} = \frac{4000}{C4 \text{ (pF)}} \text{ (kHz)}$$

(however, $G_{VC} = 50dB$) If G_{VC} is not 50dB, fHc doubles for each decrease in G_{VC} of 6dB.

Fig. 7 illustrates how changing C₄ varies the treble characteristics.

- C₅: ripple filter and pre-driver bypass capacitor The recommended value is 100μ F. If this capacitor is made too small, the ripple rejection and power output will deteriorate.
- C₆: Output coupling capacitor The recommended value is 470 μ F.
- C7: Power supply filter capacitor Determine based on the amount of power supply ripple and the regulation.

rohm

BA546

Power amplifiers

amplifiers

Low-frequency

●Circuit construction (See Fig. 11)

(1) Voltage amplification stage

This circuit is comprised of a differential amplifier (Q_1 and Q_4), a constant current source (Q_5), and an active load (Q_2 and Q_3). This active load is the input to the pre-driver (via Q_0 and Q_0).

(2) Pre-driver

The pre-driver is an earthed-emitter amplifier with transistors Q_{θ} and Q_{θ} forming a Darlington PNP transistor. The Q_{θ} collector load is the input impedance looking from the base of Q_{14} and the constant-current load due to Q_{12} .

(3) Idling loop

The idling loop is the Q_{13} , Q_{10} , Q_{11} and Q_{14} loop. The VBE of Q_{13} is subtracted from the VF of Q_{10} and Q_{11} and is biased by Q_{14} .

(4) Power stage

402

The power stage is a quasi-complementary circuit made up of a Darlington PNP transistor (Q₁₃ and Q₁₅), and an NPN transistor (Q₁₄).

(5) The AC gain is determined by the ratio between R_6 (24k $\Omega)$ and R_{NF} connected to pin 7. The formula is as follows :

$$G_{VC} \rightleftharpoons 20 \log \frac{24 k \Omega}{B_{NF}}$$
 (dB)

Variation of G_{VC} and THD with R_{NF} is shown in Fig. 9.

Fig. 12

The BA546 will generally be used as a power amplifier for portable cassette players and similar equipment, and will usually have a preamplifier before it, so insert the volume control between the stages. The gain of the power stage alone is determined by $R_{\rm NF}$. Use Fig. 9 to choose a value for $R_{\rm NF}$ that gives the required gain. When \mathbb{R}_{NF} is 68 Ω , the standard Gvc is 50dB. When combining the BA546 with an ALC-equipped preamplifier as the previous stage, the control voltage for the ALC can be taken from pin 4, and the power supply for the preamplifier from pin 9.

NOHM

BA546

.

403

Ę