Audio ICs

LED level meter driver, 5-point, VU scale BA6144

The BA6144 is a driver IC for LED VU level meters in stereo equipment and other display applications. The IC displays the input level (range : -13dB to +17dB) on a 5-point, bar-type LED display. The BA6144 includes a rectifier amplifier allowing direct AC input, and has constant-current outputs, so it can directly drive the LEDs without variations in LED current due to supply voltage fluctuations.

Applications

VU meters, signal meters, and other display devices.

Features

- 1) Rectifier amplifier allows either AC or DC input.
- Wide display level range (-13 to +17), so signals with large dynamic range can be displayed.
- Current output is optimized for red LEDs, for low power consumption.
- 4) Built-in reference voltage means that power supply voltage fluctuations do not effect the display.
- 5) Wide operating voltage range (5.5V to 16V) for a wide range of applications.
- 6) Low PCB space requirements. Comes in a compact 9-pin SIP package and requires few external components.

Block diagram

626

ROHM

BA6144

Level meter drivers

Audio accessory components

ΦA	bsol	ute	maximum	ratings	(Ta =	:25°C)
----	------	-----	---------	---------	-------	--------

Parameter	Symbol	Limits	Unit	
Supply voltage	Vcc	18	v	
Power dissipation	Pd	800*	mW	
Operating temperature	Topr	-25~70	°	
Storage temperature	Tstg	-55~125	°	
Junction temperature	Tj	150	ĉ	

* Reduced by 6.4mW for each increase in Ta of 1°C over 25°C.

ФE	lectrical	l characteristic:	s (unless	otherwise	specified 1	Ta = 25°C,	$V_{\rm CC} = 1$	2V, and $f = 1k$	Hz)
----	-----------	-------------------	-----------	-----------	-------------	------------	------------------	------------------	-----

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement Circuit
Operating voltage range	Vcc	5.5	12	16	V	_	Fig.1
Quiescent current	la	-	7	12	mA	V _{IN} =0V	Fig.1
Control level 1	V _{C1}	-16	-13	9	dB	_	Fig.1
Control level 2	V _{C2}	-9	7	-4	dB		Fig.1
Control level 3	V _{C3}		0		dB	Adjustment point	Fig.1
Control level 4	V _{C4}	7	10	12	dB	_	Fig.1
Control level 5	V _{C5}	13	17	19	dB		
Sensitivity	VIN	21	47	62	mVrms	Vca on level	
LED current	ILEO	11	15	18.5	mA		 Fig.1
Input bias current	lino	_	0.3	1.0	μA		Fig.1

Measurement circuit

ROHM

627

Application example

ates.

Fig. 2

parallel (Fig. 3 (1)) or in series (Fig. 3 (2)) with the LED.

If a resister is connected in series with the LED, the LED current will change if the supply voltage fluctu-

Note: If the power supply voltage exceeds 9V, insert a resistor in series

with the LED current supply line, or connect a heat sink so that the

maximum power dissipation Pd Max. is not exceeded (see Fig. 4).

The response time (attack and release time) can be changed by varying the values of C_1 and R_1 to change the time constant.

C₂ is a coupling capacitor, and the potentiometer VR varies the input level. Input a fixed voltage level and adjust the potentiometer so that the LED lights at OdB. To reduce the LED current, connect a resistor either in

External dimensions (Unit: mm)

628

понт