# Audio ICs

# LED level meter driver, 5-point, VU scale BA6154

The BA6154 is a driver IC for LED VU level meters in stereo equipment and other display applications. The IC displays the input level (range : -10dB to +6dB) on a 5-point, bar-type LED display. The BA6137 includes a rectifier amplifier allowing direct AC input, and has constant-current outputs, so it can directly drive the LEDs without variations in LED current due to supply voltage fluctuations.

### Applications

VU meters, signal meters, and other display devices.

## Features

- 1) Rectifier amplifier allows either AC or DC input.
- 2) Rectifier amplifier has high gain (26dB), so operation at low input level is possible.
- 3) Constant-current outputs for constant LED current when the supply voltage fluctuates.
- 4) Built-in reference voltage means that power supply voltage fluctuations do not effect the display.
- 5) Wide operating voltage range (3.5V to 16V) for a wide range of applications.
- Low PCB space requirements. Comes in a compact 9-pin SIP package and requires few external components.

#### Block diagram



rohm

629

Level meter drivers

Audio accessory components

●Absolute maximum ratings (Ta = 25℃)

| Parameter             | Symbol | Limits  | Unit |
|-----------------------|--------|---------|------|
| Supply voltage        | Vcc    | 18      | V    |
| Power dissipation     | Pd     | 800*    | mW   |
| Operating temperature | Topr   | -25~60  | Ĵ    |
| Storage temperature   | Tstg   | -55~125 | ĩ    |
| Junction temperature  | Tj     | 150     | Ϋ́   |

\* Reduced by 6.4mW for each increase In Ta of 1°C over 25°C.

## $\bullet$ Electrical characteristics (unless otherwise specified Ta = 25°C, V $\infty$ = 6.0V, and Vr = 1kHz)

| Parameter               | Symbol          | Min. | Тур. | Max. | Unit  | Conditions          | Measurement<br>Circuit |
|-------------------------|-----------------|------|------|------|-------|---------------------|------------------------|
| Operating voltage range | Vcc             | 3.5  | 6    | 16   | V .   | -                   | Fig.1                  |
| Quiescent current       | la              | . –  | 5    | 8    | mA    | V <sub>IN</sub> =0V | Fig.1                  |
| Control level 1         | V <sub>C1</sub> | -13  | -10  | -7   | dB    | _                   | Fig.1                  |
| Control level 2         | V <sub>C2</sub> | -6.5 | -5   | -3.5 | dB    | -                   | Fig.1                  |
| Control level 3         | Vca             | -    | 0    | _    | dB    | Adjustment point    | Fig.1                  |
| Control level 4         | - Vc4           | 2.5  | 3    | 3.5  | dB    |                     | Fig.1                  |
| Control level 5         | V <sub>C6</sub> | 5    | 6    | 7    | dB    |                     | Fig.1                  |
| Sensitivity             | VIN             | 36   | 45   | 54   | mVrms | Vcs on level        | Fig.1                  |
| LED current             | ILED            | 11   | 15   | 18.5 | mA    | <u> </u>            | Fig.1                  |
| Input bias current      | lino            | -    | 0.3  | 1.0  | μA    | · · -               | Fig.1                  |

Measurement circuit



Fig. 1

630

ROHM

# **BA6154**



Fig. 2



Fig. 3

The response time (attack and release time) can be changed by varying the values of  $C_1$  and  $C_2$ .

 $C_2$  is a coupling capacitor, and the potentiometer VR varies the input level. Input a fixed voltage level and adjust the potentiometer so that the LED lights at 0dB. To reduce the LED current, connect a resistor either in parallel (Fig. 3 (1)) or in series (Fig. 3 (2)) with the LED.

External dimensions (Unit: mm)



If a resister is connected in series with the LED, the LED current will change if the supply voltage fluctuates.

Note: If the power supply voltage exceeds 9V, insert a resistor in series with the LED current supply line, or connect a heat sink so that the maximum power dissipation Pd Max. is not exceeded (see Fig. 4).



Level meter drivers

Audio accessory components