Preservo Amplifiers for CD Players BA6376K

The BA6376K is a preservo amplifier that generates RF, focus error and tracking error signals from the signals output by voltage output pickups. Using this IC in combination with the BU9312KS can significantly reduce the number of attached components for CD player servos and signal processing circuits.

Applications

CD players

Features

- 1) Internal focus search sequence, for better playability.
- 2) Internal disk defect detector.
- 3) Internal auto asymmetry circuit.
- Block diagram

- 4) Internal APC circuit.
- 5) Internal focus protection against disk defects.

●Absolute maximum ratings (Ta=25℃)

Parameter	Symbol Limits		Unit	
Power supply voltage	Vcc	9	v	
Power dissipation	Pd	400	mW °C °C	
Operating temperature	Topr	-25~75		
Storage temperature	Tstg	-55~125		

* Reduced by 4.0 mW for each increase in Ta of 1°C over 25°C.

Recommended operating conditions (Ta=25°C)

- 1		•			
Parameter	Symbol	·Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	3.1	3.4	3.8	V
		/			

Pin descriptions

Pin No.	Pin name	Function
1	E	E input
2	F	Finput
3	AGND	Analog ground
4	DGND	Digital ground
5	FI	Feedback for adjusting F gain
6	. LD	APC amplifier output
7	PD	APC amplifier input
8	R∕H	Attach capacitor for ramp wave/loop-off
9	SC	Attach resistor for scratch depth adjustment
10	TE	Tracking error output
11	FON	Focus-on control
12	FOK	Focus-OK comparator output
13	FE	Focus error output 1
14	DEFECT	Defect signal output
15	MIRR	Mirror signal output
16	EFM	EFM signal output

		· ·
Pin No.	Pin name	Function
17	ASY	Auto asymmetry control input
18	DETGND	Detector ground
19	BLH	Attach bottom-long capacitor
20	PLH	Attach peak-long capacitor
21	VCC	Power supply
22	RFI	Re-Input of RF output capacitor coupling
23	RFO	RF summing amplifier output
24	RF-	Input of RF summing amplifier feedback
25	Α	A input
26	B	B input
27	D	D input
28	С	C input
29	FEB	Input of focus error bias
30	VB	Bias amplifier output
31	FE'	Focus error output 2
32 .	, El	Feedback for E gain adjustment

RF Amplifiers

●Electrical characteristics (unless otherwise noted, Ta=25℃, Vcc=3.4V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Quiescent current	la	5.0	9.0	13.0	mA		
<bias amplifier=""></bias>						· · · · · · · · · · · · · · · · · · ·	
Bias voltage	VB	1.57	1.70	1.83	v	· · · · · · · · · · · · · · · · · · ·	
Maximum output current (H)	Іон	5.0			mA	Maximum bias differential = 200 mV	
Maximum output current (L)	loL	5.0	-	_	mA	Maximum bias differential = 200 mV	
(RF amplifier)						·····	
Output voltage, offset	VOFRF	-80	-	120	m∨		
Voltage gain	Gar	20.5	23.5	26.5	dB	V7=1.5V,SG4=30mVP-P, 1kHz	
Maximum output amplitude (H)	VOHRF	1.35	1.50		v	Simultaneous input of AC and BD	
Maximum output amplitude (L)	VOLAF		-0.6	-0.3	v	V8=VB±3V	
(FE amplifier)			·				
Output voltage, offset	VOFFE	-100	-	100	mV		
Voltage gain (AC)	GFEAC	23	26	29	dB	SG4=30mV _{P-P} , 1kHz	
Voltage gain (BD)	Grebd	23	26	29	dB	SG4=30mV _{P-P} , 1kHz	
Voltage gain differential	∆Gre	-3	0	3	dB	· · · · · · · · · · · · · · · · · · ·	
Maximum output amplitude (H)	Vohte	1.35	1.50		v	Separate measurement of inputs AC and BE	
Maximum output amplitude (L)	VOLTE		-1.50	-1.35	v	V8=V _B ±0.2V	
(TE amplifier)							
Output voltage, offset	Vofte	-80	· _	80	mV		
Voltage gain (E)	GTEE	27	30	33	dB	SG1=30mV _{P-P} , 1kHz	
Voltage gain (F)	GTEF	27	30	33	dB	SG1=30mV _{P-P} , 1kHz	
Voltage gain differential	ΔGTE	-3	0	3	dB		
Maximum output amplitude (H)	VOHTE	1.35	1.50	_	v	Separate measurement of inputs E and F V1=V _B ±0.3V Pin 22 input	
Maximum output amplitude (L)	VOLTE		-1.50	-1.35	ν.		
(FOK comparator)							
Threshold voltage	VTHEK	0.2	0.3	0.4	٧		
High level output voltage	Vohfk	2.8	_		v	V6=V _B -0.4V	
Low level output voltage	VOLFK	-		0.6	v	V6=VB-0.2V	
Maximum operating frequency	FMXFK	45	_	· _	kHz		
(Asymmetrical amplifier)					-		
Output voltage, offset	VOFAS	-60	_	60	mV ·		
Voltage gain (1)	G1A6	Э	6	9	dB	Pin 22 input, 80mVP-P, 1kHz	
Voltage gain (2)	G2AS	8.5	11.5	14.5	dB	Pin 17 input, 80mVP-P, 1kHz	
Maximum output amplitude (H)	VOHAS	0.70	0.90	_	v	Pin 22 or 17 input	
Maximum output amplitude (L)	Volas		-1.4	-1.0	v	$V6=V_B\pm 1.0$	
(APC amplifier)			-				
Output voltage (1)	V01AP	2.5	3.0	_	v	Pin 7 input 180 mV	
Output voltage (2)	VO2AP	_	0.9	1.5	v	Pin 7 input 120 mV	
Maximum output amplitude (H)	Vонар	2.7	3.0		v	Pin 7 input 220 mV	
Maximum output amplitude (L)	Volap		1.9	2.2	V	Pin 7 input 0V with 0.8mA flowing through Pin 6	

62

.

പ്പ	
Disc	
tical	
ð	

Parameter	Symbol	Młn.	Тур.	Max.	Unit	Conditions	
(Mirror detector)							
High level output voltage	Vohme	3.0	-	-	v		
Low level output voltage		-	—	0.5	V		
Minimum operating frequency	FMNMR	-	-	600	Hz		
Maximum operating frequency	Бихин	30	-		kHz		
Minimum input voltage	Vmnmr		-	0.2	VP-P		
Maximum input voltage	VMXMR	1.2	-	-	VP-P		
(Defect detector)						· · · · · · · · · · · · · · · · · · ·	
High level output voltage	VOHDF	3.0	-		v	· · · · · ·	
Low level output voltage	VOLDF	-	-	0.5	V	····	2
Minimum operating frequency	FMNDF	-		1	kHz		RF Amplifiers
Maximum operating frequency	FMXDF	2	<u> </u>	_	kHz		Ām
Minimum input voltage	VMNDF		-	0.5	VP-P		ä
Maximum input voltage		1.2	—	·	Ve-e		
Pin 9 voltage	V9	0.95	1.20	1.45	v		
<pre> Ramp generator circuit ></pre>							s
Capacitance charging current	ISIRA	-2.10	-1.60	-1.10	μA		NO _N
Capacitance discharging current	ISORA	10.0	15.0	20.0	μA		For CDs/CD-ROMs
High level limit voltage	VLHPA	0.10	0.24	0.38	v		/sac
Low level limit voltage	Vilra	-0.38	-0.24	-0.10	v		ې م
〈FON pin〉							
Inrush current	lifon	10.0	15.0	20.0	μA		
Input threshold voltage	VTHEO	1.30	1.65	2.00	v		
〈Loop on〉							
Loop off dèlay time	toflo	4.0	6.5	9.0	msec		

* When FON is LOW, pin 8 voltage is Ve.
* The ramp wave begins at the bottom.
* The loop will not turn ON when the ramp wave is at the bottom.
* Pin 8 is charged rapidly when the loop turns ON.

Measurement circuit

64

BA6376K

- Circuit operation
- Focus search sequence operations
- When the loop turns on

The focus loop turns on when the fall of FEC is detected while FOK is at the HIGH level.

The focus loop turns off after the elapse of a delay

(T[S], see below) after FOK changes to the LOW state.

When the loop turns off

For CDs/CD-ROMs RF

ROHM

Application example

66

BA6376K

ROHM

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

- Notes when exporting
 - It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
 - Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.