5-channel BTL driver for CD players BA6395AFP The BA6395AFP is a 5-channel BTL driver for CD player motors and actuators. This IC has an internal 5V regulator, and is suited to a wide range of applications. #### Applications CD players and CD-ROM drives #### Features - Internal drivers for focus coils, tracking coils, spindle motors, feed motors and loading. (The loading and spindle motor output pins are dual-use output pins and are switched between drivers using a control input.) - 2) HSOP 28-pin package allows for miniaturization of applications. - 3) Low number of external components. - Driver gain is adjustable with a single attached resistor. - Internal 5V regulator. (requires attached PNP transistor) - 6) Internal thermal shutdown circuit. # ●Absolute maximum ratings (Ta = 25°C) | Parameter | Symbol | Limits | Unit | |-----------------------|--------|----------------|------| | Power supply voltage | Vcc | 18 | ٧ | | Power dissipation | Pd | 1.7*1 | W | | Operating temperature | Topr | −35~+85 | °C | | Storage temperature | Tstg | -55~+150 | °C | ^{*1} When mounted on a 50 mm \times 50 mm \times 1.0 mm paper phenol board. Reduced by 13.6 mW for each increase in Ta of 1°C over 25°C. #### • Recommended operating conditions (Ta = 25°C) | Parameter | Symbol | Limits | Unit | |----------------------|--------|--------------------|------| | Power supply voltage | Vcc | 6~12* ² | ٧ | ^{*2} The driver can operate as low as 4.8 V. # Block diagram # Pin descriptions | Pin No. | Pin name | Function | |---------|----------|--| | 1 | OUT1-1 | Driver channel 1 negative output | | 2 | OUT1-2 | Driver channel 1 positive output | | 3 | IN1-1 | Driver channel 1 input | | 4 | IN1-2 | Driver channel 1 input, gain adjustment pin | | 5 | Vreg-B | Connect to external transistor base | | 6 | Vreg-OUT | Constant voltage output, connects to external transistor collector | | 7 | MUTE | Mute control input | | 8 | GND | Ground | | 9 | CTL | Loading and driver channel 2 switch | | 10 | IN2 | Driver channel 2 input | | 11 | OUT2-1 | Driver channel 2 positive output | | 12 | OUT2-2 | Driver channel 2 negative output/loading output pin | | 13 | OUT2-3 | Loading negative output pin | | 14 | GND | Ground | | 15 | REV | Loading input, reverse | | 16 | FWD | Loading input, forward | | 17 | OUT3-1 | Driver channel 3 negative output | | 18 | OUT3-2 | Driver channel 3 positive output | | 19 | LDIN | Loading input | | 20 | IN3 | Driver channel 3 input | | 21 | Vcc | Power supply | | 22 | Vcc | Power supply | | 23 | Vref-IN | Bias amplifier input | | 24 | IN4-2 | Driver channel 4 gain adjustment pin | | 25 | IN4-1 | Driver channel 4 input | | 26 | OUT4-2 | Driver channel 4 positive output | | 27 | OUT4-1 | Driver channel 4 negative output | | 28 | GND | Ground | Note: Postive and negative output is relative to the polarity of the input pins. # ●Input/output circuits Fig.1 ●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 8V, f = 1kHz, RL = 8Ω) | Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions | |---------------------------------------|------------------|------|------|------|------|---| | Quiescent current dissipation | Icc | 7.0 | 10.0 | 13.0 | mA | No load | | Mute-off voltage | VMOFF | 2.0 | _ | _ | V | | | Mute-on voltage | VMON | _ | _ | 0.5 | ٧ | | | 〈Drivers (other than loading driver)〉 | | | | | | | | Output offset voltage 1 | V001 | -40 | _ | 40 | mV | Channel 1,3,4 drivers | | Output offset voltage 2 | V002 | -60 | _ | 60 | mV | Channel 2 driver (spindle) | | Maximum output voltage 1 | Vон1 | 3.8 | 4.3 | _ | V | V _{IN} =0.7V | | Maximum output voltage 2 | V _{OH2} | _ | -4.3 | -3.8 | V | V _{IN} =8V | | Closed loop voltage gain 1 | Gvc1 | 7.0 | 8.0 | 9.0 | dB | V _{IN} =0.5V (excluding spindle) | | Closed loop voltage gain 2 | Gvc2 | 8.5 | 11.0 | 13.5 | dB | V _{IN} =0.5V (pindle) | | Ripple rejection | RR | _ | 60 | _ | dB | V _{IN} =0.1V _{rms} ,100Hz | | Slew rate | SR | _ | 2.0 | _ | V/μs | 100 Hz square wave, 3 V _{P-P} output | | ⟨Loading driver⟩ | | | | | | | | Output voltage F | Vor | 2.7 | 3.2 | 3.7 | V | V | | Output voltage R | Vor | -2.5 | -3.0 | -3.5 | V | Vcc=8V, RL=45Ω, VLD=3.0V | | Output voltage range F | Vome | 1.9 | 2.2 | _ | V | V | | Output voltage range R | Vomr | _ | -2.2 | -1.9 | V | Vcc=5V, RL=10Ω, VLD=4.5V*1 | | Load regulation F 1 | ∆V _{F1} | _ | 250 | 500 | mV | Vcc=8V, VLD=3.0V | | Load regulation R 1 | ∆V _{R1} | _ | 250 | 500 | mV | I=100→400mA *2 | | Load regulation F 2 | ∆VF2 | _ | 600 | 850 | mV | Vcc=5V, VLD=4.5V | | Load regulation R 2 | ΔVR2 | _ | 600 | 850 | mV | I=100→400mA *2 | | Line regulation F | ΔVFL | -500 | _ | 500 | mV | Vcc=4.8V→12V, R∟=∞ | | Line regulation R | ΔVRL | -500 | _ | 500 | mV | Vcc—4.8V→12V, RL— ω | | Output offset voltage | Vool | -50 | _ | 50 | mV | | | Controller CTL, FWD, REV | ∕ pins〉 | | | | | | | Input high level voltage 1 | V _{IH1} | 2.0 | _ | _ | V | FWD (16pin), REV (15pin) | | Input low level voltage 1 | V _{IL1} | _ | _ | 0.5 | V | Determined by input pin voltage | | Input high level voltage 2 | V _{IH2} | 4.0 | _ | _ | V | CTL (9pin) | | Input low level voltage 2 | VIL2 | _ | _ | 0.5 | V | Determined by input pin voltage | | Input high level current | Ін | _ | _ | 500 | μΑ | V _{IN} =5V | | Input low level current | lı∟ | _ | _ | 500 | μΑ | V _{IN} =0V | | ⟨5 V regulator⟩ | | | | | | | | Output voltage | Vreg | 4.75 | 5.00 | 5.25 | V | IL=100mA | | Load regulation | ΔVRL | -50 | 0 | 50 | mV | IL=0~200mA | | Line regulation | ΔVvcc | -10 | 0 | 25 | mV | (Vcc=6~9V) I∟=0~100mA | ^{\$1~} VomF and VomR remain roughly the same even when loading input VLD (pin 19) is opened. This is the load variation in this state. ^{*2} ΔVF1, ΔVR1 indicate load variation at unclipped, 4.5 V output. Δ VF2, Δ VR2 indicate load variation when output is clipped to generate 4.5 V input at reduced voltage (5 V) #### Circuit operation #### (1) Driver Inputs to the IC are the focus tracking error signal from the servo preamplifier and the control signal from the motor. The input signals, which normally center on 2.5V, are V/I converted by the preamplifier, generating a current corresponding to the input voltage. This current is passed through a resistor and into the internal reference voltage component, the preamplifier output being a signal centering on the internal reference voltage. Two systems (positive phase and negative phase) are created during V/I conversion, generating BTL output via the driver buffer. Fig.2 # (2) Regulator This is a typical series regulator that generates a reference voltage internally. A PNP low saturation transistor must be connected. Fig.3 (3) Operational amplifier A standard 4558 type. # 4. Channel 2/loading motor driver output mode switching (Vcc = 8V) | CTL | FWD | REV | CH2 | | Illustration | | |-----|-----|-----|-----|-----|----------------|--------| | | | L | | | | | | L | L | Н | ON | OFF | | Fig. 4 | | | 11 | L | | | | Fig. 4 | | | Н | Н | | | | | | Н | L | L | OFF | OFF | High impedance | Fig. 5 | | | | Н | | | Reverse | Fig. 6 | | | Н | L | | ON | Forward | Fig. 7 | | | | Н | | | Brake | Fig. 8 | Fig. 4 Fig. 5 Fig. 6 H pin 9 CTL OFF pin11 channel 2 load ov Fig. 8 # (5) Loading motor driver voltage setting ### Example: Forward motor Input voltage =|output voltage|(gain: 0 dB) Fig. 9 Loading driver output voltage cannot be set higher than the maximum output voltage for the power supply. The example above applies only when setting below the maximum output voltage. Maximum output voltage for the power supply can be output by opening the loading pin (pin 19). # Application example Fig. 10 #### Operation notes - (1) The BA6795AFP has an internal thermal shutdown circuit. Output current is muted when the chip temperature exceeds 175°C (typically). - (2) If the mute pin (pin 7) voltage is opened or lowered below 0.5V, the output current will be muted. Pin 7 should be pulled up above 2.0V during normal use. - (3) The bias pin (pin 23) is muted when lowered below 1.4V (typically). make sure it stays above 1.6V during normal use. - (4) The driver circuit shuts down when the supply voltage drops below 4.3V (typically), and starts up again when the voltage rises above 4.5V (typically). - (5) Muting occurs during thermal shutdown, mute-on operations or a drop in the bias pin voltage or supply voltage. In each case, only the drivers are muted. During muting, the output pins remain at the internal bias voltage, roughly (Vcc-V_F)/2. - The internal input resistor has a positive temperature coefficient of roughly 2000ppm/degree, and so when changing the gain using an attached resistor, gain will also change at a rate of roughly 2000ppm/degree. There is virtually no gain variation due to temperature when using the internal input resistor. - (7) Be sure to connect the IC to a 0.1 µF bypass capacitor to the power supply, at the base of the IC. - The radiating fin is connected to the package's internal GND, but should also be connected to an external ground. - (9) The capacitor between regulator output (pin 6) and GND also serves to prevent oscillation of the IC, so select one with good temperature characteristics. #### Thermal derating curves AMBIENT TEMPERATURE: Ta (°C) PCB 50mm×50mm, thickness 1mm paper phenol when installed Fig. 12 Output voltage vs. input voltage (channels 1, 3 and 4) Fig. 13 Output voltage vs. input Fig. 11 Thermal derating curve voltage (channel 2) Fig. 14 Loading driver I / O characteristics Fig. 15 Output offset voltage vs. power supply voltage Fig. 16 Loading output vs. power supply voltage Fig. 17 Loading output vs. power supply voltage Fig. 18 Regulator voltage vs. ambient temperature External dimensions (Units: mm)