Optical disc ICs

4-channel BTL driver for CD players BA6397FP

The BA6397FP is a 4-channel BTL driver for CD player motors and actuators. The 5V regulator and internal standard operational amplifier make this IC suited to a broad range of applications.

Applications

CD players and CD-ROM drives

Features

- 1) HSOP 28-pin package allows for miniaturization of applications.
- 2) Low number of external components.
- Driver gain is adjustable with a single attached resistor.
- Internal 5V regulator. (requires attached PNP transistor)
- 5) Internal standard operational amplifier.
- 6) Internal thermal shutdown circuit.

•Absolute maximum ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	18	V
Power dissipation	Pd	1.7 *1	w
Operating temperature	Topr	$-35 \sim +85$	ΰ
Storage temperature	Tstg	-55~+150	C

*1 When mounted on a 50 mm x 50 mm x 1.0 mm paper phenol board Reduced by 13.6 mW for each increase in Ta of 1°C over 25°C.

•Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	6~9 *2	V

*2 The driver can operate as low as 4.5 V

Block diagram

Pin descriptions

Pin No.	Pin name	Function		
1	Ch1-OUT A	Driver channel1 negative output		
2	Ch1-OUT B	Driver channel1 Positive output		
3	Ch1—IN A	Driver channel1 input		
4	Ch1-IN B	Driver channel1 input, gain adjustment pin		
5	Tr – B	Connect to external transistor base		
6	Vreg OUT	Constant voltage output, connects to external transistor collector		
7	MUTE	Driver mute control input		
8	GND	Ground		
9	Ch2-IN B	Driver channel 2 input, gain adjustment pin		
10	Ch2—IN A	Driver channel 2 input		
11	Ch2-OUT B	Driver channel 2 positive output		
12	Ch2-OUT A	Driver channel 2 negative output		
13	GND	Substrate ground		
14	OP OUT	Operational amplifier output		
15	OP IN (-)	Operational amplifier input, negative		
16	OP IN (+)	Operational amplifier output, positive		
17	Ch3-OUT A	Driver channel 3 negative output		
18	Ch3-OUT B	Driver channel 3 Positive output		
19	Ch3—IN A	Driver channel 3 input		
20	Ch3—IN B	Driver channel 3 input, gain adjustment pin		
21	Vcc	Power supply		
22	Vcc	Power supply		
23	BIAS IN	Bias amplifier input		
24	Ch4-IN B	Driver channel 4 input, gain adjustment pin		
25	Ch4—IN A	Driver channel 4 input		
26	Ch4-OUT B	Driver channel 4 positive output		
27	Ch4-OUT A	Driver channel 4 negative output		
28	GND	Substrate ground		
28	GND	Driver channel 4 negative output		

Note: Positive and negative output is relative to the polarity of the input pins

Input/output circuits

Fig.1

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current dissipation	lcc	6.0	10.0	14.0	mA	No load
Output voltage, offset	Voo	-40	—	40	mV	
Maximum output voltage, high	Vohd	5.2	5.6	—	V	
Maximum output voltage, low	Vold	—	1.3	1.55	V	
Closed loop voltage gain	Gvc	7.0	8.0	9.0	dB	VIN=0.1Vrms, 1kHz
Ripple rejection ratio	RR	-	60	—	dB	VIN=0.1Vrms, 100Hz
Slew rate	SR	-	2.0	-	V/µs	100 kHz square wave, 3 VP-P output
MUTE OFF voltage	VMOFF	2.0	—	_	V	
$\langle 5V regulator \rangle$						
Output voltage	Vreg	4.75	5.00	5.25	V	IL=100mA
Output load differential	ΔV_{RL}	-50	0	10	mV	I∟=0~200mA
Power supply voltage differential	ΔVvcc	-10	0	25	mV	(Vcc=6~9V) IL=100mA
(Operational amplifier)						
Offset voltage	Vofop	-5	0	5	mV	
Input bias current	VBOP	—	—	300	nA	
Output high level voltage	Vонор	6.0	-	-	V	
Output low level voltage	Volop	_	—	1.8	V	
Output drive current (sink)	SINK	10	50	_	mA	50Ω at Vcc
Output drive current (source)	ISOURCE	10	40	_	mA	50 Ω at ground
Open loop voltage gain	Gvo	_	78	-	dB	V _{IN} =−75dBV, 1kHz
Slew rate	SROP	—	1	_	V/µs	100 kHz square wave, 4 VP-P output
Ripple rejection ratio	RRop	—	65	_	dB	V _{IN} =-20dBV, 100Hz
Common mode rejection ratio	CMRR	70	84	_	dB	V _{IN} =-20dBV, 1kHz

Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 8V, f = 1kHz, R_L = 8Ω)

Circuit operation

(1) Driver

Inputs to the IC are the focus tracking error signal from the servo preamplifier and the control signal from the motor. The input signals, which normally center on 2.5V, are V/I converted by the preamplifier, generating a current corresponding to the input voltage. This current is passed through a resistor and into the internal reference voltage component, the preamplifier output being a signal centering on the internal reference voltage. Two systems (positive phase and negative phase) are created during V/I conversion, generating BTL output via the driver buffer.

Fig. 2

(2) Regulator

This is a typical series regulator that generates a reference voltage internally. A PNP low saturation type transistor must be connected.

(3) Operational amplifier

A standard 4558 type.

Application example

Operation notes

(1) The BA6397FP has an internal thermal shutdown circuit. Output current is muted when the chip temperature exceeds 175°C (typically).

(2) If the mute pin (pin 7) voltage is opened or lowered below 0.5V, the output current will be muted. Pin 7 should be pulled up above 2.0V during normal use.

(3) The bias pin (pin 23) is muted when lowered below1.4V (typically). Make sure it stays above 1.6V during normal use.

(4) Muting occurs during thermal shutdown, mute-on operations or a drop in the bias pin voltage. In each case, only the drivers are muted. During muting, the output pins remain at the internal bias voltage, roughly $(V_{CC}-V_F)/2$.

(5) The internal input resistor has a positive temperature coefficient of roughly 2000ppm/degree, and so when changing the gain using an attached resistor, gain will also change at a rate of roughly 2000ppm/degree. There is virtually no gain variation due to temperature when using the internal input resistor.

(6) Be sure to connect the IC to a 0.1μ F bypass capacitor to the power supply, at the base of the IC.

(7) The radiating fin is connected to the package's internal GND, but should also be connected to an external ground.

(8) The capacitor between regulator output (pin 6) and GND also serves to prevent oscillation of the IC, so select one with good temperature characteristics.

•Electrical characteristic curves

ROHM

Fig. 7 Drive I / O characteristics (variable power supply)

Optical disc ICs

0.15

HSOP28