Reversible motor driver BA6418N

The BA6418N is a reversible-motor driver with a maximum output current of 0.7A. Two logic inputs allow four output modes : forward, reverse, stop (idling), and brake. Because logic and power sections have separate ground pins, the IC can drive speed-variable, reversible motors by connecting an electronic governor circuit.

Features

- 1) Surge-absorbing diodes are built in.
- 2) Small standby circuit current.
- 3) Wide range of operating voltage. (4.5 \sim 15V)
- 4) Interfaces with TTL devices.
- 5) Built-in thermal shutdown circuit.

Block diagram

●Absolute maximum ratings (Ta=25℃)

Parameter	Symbol	Limits	Unit	
Power supply voltage	Vcc	18	V	
Power dissipation	Pd	800*	mW	
Operating temperature	Topr	-20~60	Ĵ	
Storage temperature	Tstg	-55~125	C	
Maximum output current	lo	0.7	А	

* Reduce power by 8 mW for each degree above 25°C.

Reversible DC Motor Drivers

DC Motor Drivers

Motor driver ICs

BA6418N

Input/output truth table

3pin (IN)	1pin (IN)	7pin (OUT)	9pin(OUT)
н	L	L	н
L	,H	н	L
Н	Н	L	L
L	L	OPEN	OPEN

Note : HIGH level input is 2.0 V or more LOW level input is 0.8 V or less

●Electrical characteristics (Unless otherwise noted, Ta=25℃, Vcc=9V)

Parameter	Symbol	Min.	Тур.	Max.	Ųnit	Conditions
Circuit voltage range 1	Vcc1	4.5	-	15	V	Pin 6-pin 2.5 voltage
Circuit voltage range 2	Vcc2	4		15	v	Pin 6-pin 8 voltage
Circult current 1	loc1	18	34	50	mA	1pin "H", 3pin "L" or 1pin "L" 3pin "H" R∟=∞
Circuit current 2	ICC2	34	52	70	mA	1pin "H", 3pin R∟=∞
Standby circuit current	lst	_		1.5	mA	1pin "L", 3pin "L"
HIGH level input voltage	ViH	2.0	-	_	V	
LOW level input voltage	Vı∟	_	-	0.8	v	
HIGH level input current	lн	_	93	135	μA	V _{IN} =2.0V
Output saturation voltage	Vce	_	1.2	1.6	v	Io=200mA Sum of output transistor high- and low-side voltages

Input/output circuit (Equivalent circuit)

Application example

ROHM

Motor driver ICs

Temperature dissipation curve

Fig.3 Temperature dependence of power dissipation curve

Operation notes

(1) To improve the reliability of operation, make sure to go through the stop (idling) mode when reversing the motor rotational direction.

(2) Control pins

Voltage should never be applied to the control pins (pins 1 and 3) from the logic circuit when the V_{CC} voltage is not applied to the IC. Similarly, the voltage of each input pin should not exceed any applied V_{CC} voltage.

(3) Power supply impedance

Suppress the power supply line impedance to low levels, otherwise output oscillation may occur.

(4) Current consumption

The ratio of current consumption (lcc1 versus lcc2) is 1:2 for the logic section GND (pins 2 and 5) and the power section GND (pin 8).

(5) Ground pin potential

Keep the potential of the ground pins (pins 2 and 5) lower than the potentials of the other pins.

(6) Minimum operating voltage applied between power supply (pin 6) and COM (pin 8)

The minimum operating voltage applied between these pins is 4V at an ambient temperature of 25° C, but the voltage increases by 8mV (typical) for each degree below 25° C. Keep in mind this negative temperature dependence when setting the voltage at low ambient temperatures.

(7) Thermal shutdown circuit

When the thermal shutdown circuit is activated at the IC junction temperature of about 175 °C (typical), all driver outputs are turned OFF. There is a temperature difference of about 15 °C (typical) between the temperatures at which the circuit is activated and deactivated. (8) To eliminate motor noise, connect a capacitor between OUT₁ (pin 9) and GND and between OUT₂ (pin 7) and GND. Alternatively, connect a capacitor between OUT₁ and OUT₂, and also a diode between OUT₁ and GND and between OUT₂ and GND (see Fig. 4).

rohm

Motor driver ICs

1

Fig.5 HIGH level output voltage vs. output current

Fig.6 LOW level output voltage vs. output current

Fig.7 Circuit current vs. supply voltage

.

Fig.8 Standby circuit current vs. supply voltage

External dimensions (Units: mm)

454

rohm

ł