3-phase motor driver BA6458FP-Y

The BA6458FP-Y is a one-chip IC designed for driving video cassette recorder cylinder motors. It is a high-performance IC with a 3-phase, full-wave, pseudo-linear drive system. The IC is compactly packaged.

Applications

Video cassette recorder cylinder motors

Features

- 1) 3-phase, full-wave, pseudo-linear drive system.
- 2) Output saturation voltage is low with low variation.
- 3) Built-in torque limit pin.

- 4) Contains two amplifiers and two hysteresis amplifiers to amplify FG and PG signals.
- 5) Built-in thermal shutdown circuit.

Block diagram

ROHM

589

Motor driver ICs

●Absolute maximum ratings (Ta=25℃)

Parameter	Symbol	Limits	Unit	
Power supply voltage	Vcc	7	v	
Power supply voltage	°∨м	24	v	
Power dissipation	Pd	1450*1	mW	
Operating temperature	Topr	-20~75	ĉ	
Storage temperature	Tstg	-55~150	Ċ	
Output current	lour	1300*2	mA	

Mounted on a glass epoxy PCB (90 X 50 X 1.6 mm).

*1 Reduce power by 11.6 mW for each degree above 25° C.

*2 Should not exceed Pd- or ASO-value.

Recommended operating conditions (Ta=25°C)

Parameter	Symbol	Min.	Max.	Unit	
Operating power supply voltage	Vcc	4.25	5.50	۷	
Operating power supply voltage	Vм	3.0	20	V	

Electrical characteristic curves

Fig.1 Power dissipation curves

ROHM

BA6458FP-Y

BA6458FP-Y

õ	
iver	
or di	
lotc	
2	

Three-Phase Full-Wave Motor Drivers for Cylinder Motors

Motor Drivers for VCRs

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Circuit current	lcc		8.5	13.0	mA	
(MDA)						·
Hall input bias current	Івн		0.5	5.0	μA	H ⁺ =High, H ⁻ =Low or H ⁻ =High
Hall input common-mode voltage	Vнв	1.5		4.0	V	
Hall in-phase input voltage range	Vinh	60			mV₽₽₽	
Torque control input voltage range	Ec	0	! <u> </u>	5.0	V	
Torque control voltage offset	Ecore	-150	0	150	mV	For Ec = 2.3 V
Output idle voltage	Ecidle	_	0	10	mV	Ec=2V, RNF=0.5Ω
Servo input current	Ecin		1.0	5.0	μA	Ec=2.5V
Input / output gain	GEC	0.420	0.510	0.600	. A/V	Measured at Ec= 2.8 V, 3.3 V; Βν⊧= 0.5Ω
Start/stop ON voltage	Vs/s ON	3.5		<u> </u>	V	
Start/stop OFF voltage	Vs/s OFF			1.2	V	
HIGH level output saturation voltage	Vон	10.4	11.1		V	lo=600mA
LOW level output saturation voltage	Vol	·	0.3	0.9	V	Io=600mA
Output drive current capacity	lo (Max.)	800	_		mA	RNF=0.5Ω Tj=25℃ *
Torque limit current	In.	520	650	780	mA	TL=0.4V, RNF=0.5Ω
(Amp1, Amp2)						
Input impedance	Вва	14	20	26	kΩ	
Open loop gain	G₄	65	70	-	dB	f=500Hz
DC bias voltage	VBA	2.20	2.45	2.70	V	
HIGH level output voltage	Vон а	3,6	4.0		V	Ioa=0.5mA
LOW level output voltage	VOL A		0.9	1.3	V	Ioa=0.5mA
Amp1, Amp2 input voltage range	Vab	1.2		4.0	V	
(Schmitt trigger amplifiers)	·	·		<i>i</i>	·	
Hysteresis width	Vhys	±112	±150	±188	mV	
DC bias voltage	VBhys	2.20	2.45	2.70	v	
LOW level output voltage	VOLhys	- ·	0.1	0.3	V	IOLhys=2mA
Output pull-up resistance	Rehys	7.0	10.0	13.0	kΩ	· • - ··· - ···

* Tj is chip junction temperature.

O Not designed for radiation resistance

WIND

Circuit operation

(1) The 3-phase Hall signal is amplified in the hall amplifiers and sent to the matrix section, where the signal is further amplified and combined. After the signal is converted to a current in the amplitude control circuit, the current is supplied to the output driver, which then provides a motor drive current. The phases of the Hall input signal, output voltage, and output current are shown in Fig. 5.

.

(2) Torque control pin

The output current can be controlled by adjusting the voltage applied to the torque control pin (9 pin). Output current

(3) Start/stop pin

The motor is in the run mode when the pin input voltage is 3.5V or more and in the idle mode (all output transistors are off) when the voltage is 1.2V or less.

(4) Power ground pin (RNF pin)

The R_{NF} pin is the output stage ground pin. Connect a resistor (0.5Ω recommended) between this pin and the ground to monitor the output current.

(5) Torque limit pin (TL pin)

The output current can be limited by applying a voltage to the torque limit pin. Control is provided so that this pin will have the same potential as the R_{NF} pin. Note that there is an offset in the TL-pin voltage.

(6) Phase compensation pin (C_{NF} pin)

Connect a capacitor between this pin and V_{cc} if the output tends to oscillate.

(7) Amplifiers 1 and 2

Amplifiers 1 and 2 have an open loop gain of about 70dB (typical). The input terminals are biased internally to 2.45V (typical).

(8) Hysteresis amplifiers

The hysteresis amplifiers have a hysteresis width of \pm 120mV (typical). The input terminals are biased internally.

592

ROHM

BA6458FP-Y

Pin descriptions

Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	H1 ⁺	Hall signal input pin	14	Amp2 IN ⁺	Amplifier 2 input, non-inverted
2	H1-	Hall signal input pin	15	Amp2 IN ⁻	Amplifier 2 input, inverted
3	H2 ⁺	Hall signal input pin	16	Amp2 OUT	Amplifier 2 output pin
4	H2-	Hall signal input pin	17	Hys. OUT2	Schmitt trigger amplifier 2 output pin
5	Н3+	Hall signal input pin	18	TL	Torque limit pin
6	H3-	Hall signat input pin	19	Vcc	Power supply pin
7	S-GND	Signal ground pin	20	Vм	Motor power supply pin
8	CNF	Capacitor connection pin for phase compensation	21	A3	Output pin
9 -	[•] Ec	Output current control pin	22	A2	Output pin
10	Hys. OUT1	Schmitt trigger amplifier 1 output pin	23 -	RNF	Output current sensing pin
11		Output pin for amplifier 1 and schmitt trigger amplifier 1	24	A1	Output pin
12		Amplifier 1 input, inverted	25	ST / SP	Start/stop switching pin
13	Amp1 IN+	Amplifier 1 input, non-inverted	FIN	FIN	Be sure to connect this radiation fin to the ground.

Operation notes

- 1. Input/output circuit
- (1) Start/stop switching pin (25 pin)

(2) Torque limit pin (18 pin)

Fig.8

(3) Torque control input (9 pin)

593

Motor Drivers for VCRs

Motor driver ICs

Operation notes

(5) Hall input
(H1⁺: 1 pin, H1⁻: 2 pin, H2⁺: 3 pin, H2: 4 pin, H3⁺: 5 pin, H3⁻: 6 pin)

(6) I/O of amplifiers 1 and 2

(Resistances, in Ω , are typical values)

Fig.12

(7) I/O of hysteresis amplifiers

(Resistances, in Ω , are typical values)

Fig.13

* Note that resistance values of the I / O circuits can vary $\pm 30\%$

2. Torque control

The RNF-pin output voltage is plotted against the torque control input voltage (Ec) in Fig. 14.

3. Start/stop pin

The I/O equivalent circuit of the start/stop pin is shown in 1. (1) of "Precautions for use." The pin has a temperature dependence of -7mV/°C, and the resistance can vary $\pm 30\%$. Take the temperature effect into consideration when designing your application.

4. Hall input

The I/O equivalent circuit of the Hall input pins is shown in 1. (5) of "Precautions for use." The Hall devices can be connected in either series or parallel.

Fig.15

5. Torque limit pin (18 pin)

The output current can be limited by applying a voltage to the torque limit pin. Control is provided so that this pin will have the same potential as the power ground pin. Note that there is a voltage offset on this pin. The RNF-pin voltage is 0.325V when the TL-pin voltage is 0.4V (typical) and the RNF-pin resistance is 0.5Ω . Note that the voltage offset changes with the RNF-pin resistance.

6. Amplifiers 1 and 2

Unpredictable outputs may occur when the amplifier input is outside the recommended range.

594

ROHM

7. Hysteresis amplifier

the input is outside this range.

8. Thermal shutdown circuit (TSD)

An input range of 0.6V to (Vcc~1.2V) is recom-

mended. Unpredictable outputs may occur when

BA6458FP-Y

The circuit puts the driver outputs (A1, A2, and A3)

to the open state at the temperature of 175°C (typi-

cal). There is a temperature difference of about

20°C between the temperatures at which the circuit

is activated and deactivated.

Motor driver ICs

Three-Phase Full-Wave Motor Drivers for Cylinder Motors

Motor Drivers for VCRs

Application example <u>,</u> Ţ Ş (19 Vcc ٧м H1⁻¹ Hall Amp A1 24 2 н Ì H2+ Holi Amp 3 A2 Gain Control Driver (2) Э_{н2}-5<u>H3</u>+ Hall Amp A3 2 6) ′нз-ST/SP Ş Start Stop TSD 25) CNF 8 Current Sense Amp Torque Amp VREF RNF 2 Servo 9 Η Ec GP IN+ VREF VREF Amp 1 FG Amp Hys. Amp Нув. Amp 1 IN+ (13 Д Л Amp 1 INT -5–GND GI OUT2 Amp 2 OUT 18 10 15 Amp 1 OUT Hys. IN2 Amp 2 IN Hys. OUT1 Amp 2 IN $\Lambda\Lambda$ Ş Ż J 0

Fig.16 External dimensions (Units: mm) 13.6±0.2 2.75±0.1 ARARAR ARARAR 8±0.3 440 ICAFAE LAAFAFAE 0.25±0.1 1.95±0.1 13 0.36±0.1 I.9±0.1 0.8 5 0.3Min. 0.15 HSOP25

ROHM

595