Read/Write Amplifier for FDD BH6627FS

The BH6627FS is a 4-mode read/write IC designed for floppy disk drives. This IC has an internal active filter that can be set to any of multiple settings according to transfer rate, and internal switches for density and inner edge/outer edge. Write current can be set to any of multiple settings.

Applications

Floppy disk drives (1MB, 1.6MB and 2MB drives)

Features

- 1) Internal active filter with four settings that can be selected for multiple Q and fo.
- 2) Time domain filter with internal switch set according to transfer rate.
- Any of multiple write current settings can be selected, and inner track/outer track switching is done internally.

●Absolute maximum ratings (Ta=25℃)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	+7	v
Operating temperature	Торя	0~+70	C
Storage temperature	Тята	-55~+125	ĉ
Digital input voltage	VI	-0.5~Vcc+0.3	v
RW pin voltage	VRW	+15	v
LVS output voltage	VLVS	Vcc+0.3	v
ED pin voltage	VER	Vcc+0.3	v
Power dissipation	Po	650*	mW

* When using at temperatures of Ta=25°C or higher, reduce power by 6.5 mW for each 1°C above 25°C.

Recommended operating conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc .	4.5	5.0	5.5	v

rohm

BH6627FS

Block diagram

(Note) The Vcc fret pattern must be short, and the impedance between Vcc and GND must be lowered by inserting a pass conductor.

402

ROHM

BH6627FS

1

Pin descriptions

Pin No.	Name	Equivalent circuit	Function
1	wcc		For connecting the write current adjustment resistor Connect the write current adjustment resistor between this pin and Vcc. Setting this pin to the low level during reading switches MONI to differentiator output.
2	Vcc		Power supply pin
З	RW00		Active when SIDE0 and the read/write head connecting pin (pin 15, XS1) is at the high level (side 0)
4	RW01		Starts at RW00 during the start of writing (from reading to writing)
5	RW10		Active when the read/write head connecting pin (pin 15, XS1) is at the low level (side 1)
6	RW11		Starts at RW10 during the start of writing (from reading to writing)
7	ED0		Side 0 erase current sink
8	ED1		Side 1 erase current sink

Pin No.	Name	Equivalent circuit	Function
9	XHD		1 MB/2 MB selector High = 1 MB Low = 2 MB
10	F2		1.6 MB drive selector Selector signal high level = active High = 1.6 MB drive, low = 2 MB drive
11	XTR2	10 11 12 30k 10 10 10 10 10 10 10 10 10 10 10 10 10	Inner track/outer track position setting Controls the write current
12	XTR1 (XSWF)		Inner track/outer track position setting Controls the filter and write current
13	XWG		Write enable gate (Schmidt input) Low = active
14	XEG		Erase enable gate (Schmidt input) Low = active
15	XS1		Head/side switching signal Low = active (Schmidt input) High = side 0, Iow = side 1

404

Rohm

ı.

BH6627FS

Pin No.	Name	Equivalent circuit	Function
21	XLVS		External low level - voltage detection pin Open collector output when low level voltage is detected. Switches to low level when Vcc drops below the specified voltage
22	MONI		Preamplifier output and differentiator output monitoring Monitor is switched with pin 1 (WCC)
23	AGND		Analog ground
24	RCC		Filter (LPF, BPF) cutoff frequency and TDF 1st M/M pulse width setting resistor connection

406

ROHM

ı.

●Electrical characteristics (unless otherwise noted, Ta=25℃, Vcc=5V)

Current consumption

Parameter	Symbol	Min.	Тур.	Max.	Unit		Conditions
Current consumptioin,Standby	ICCST	-	165	400	μA	*1	
Current consumptioin,Read	ICCR	_	28	42	mA	*1	
Current consumptioin, Write	ICCW		8.5	1,5	mA	*2	

*1 RRCC=2.0 [kΩ] (XHD=H) *2 RWCC=2.4 [kΩ] *(2 MB inner track, XTR2=H time, except IWR and IER)

Low level voltage detection circuit

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Threshold voltage	VTH+	—	3.95	4.2	V	When power supply voltage rises
	VTH	3.5	3.75	4.0	V	When power supply voltage falls
Hysteresis voltage	VH	50		-	mV	,
Output voltage, low level	VOL	—		0.40	V	Vcc=2.5[V] IOL=0.2[mA]
Output leakage current	IOH			10	μA	

Recovery time

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
POWER·SAVE→READ	TR2	—	—	500	μs	by XPS
READ→ERASE	TR3	-	_	6	μs	by XEG
READ→WRITE	TR4	- 1	-	4	μs	by XWG
	TR5E	·	—	20	μs	by XEG
WRITE→READ	TR5W			160	μs	by XWG
SIDE0++SIDE1	TR6	-	-	40	μs	by XS1
1MB↔2MB	TR7	_		40	μs	by XHD
1.6 MB ↔2 MB	TR8		. –	40	μs	by F2
Inner-outer track	TR9		-	40	μs	by XTR1
Write current switch	TR10		-	40	μs	by XTR2

FDD/HDD

ROHM

÷

Preamplifier

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Voltage gain (1)	GVD1	43	46	49	dB	f=125[kHz], VIN=2.5[mVp-p] (XTR1=L) (differential)
Voltage gain (2)	GVD2	46	49	52	dB	f=125[kHz], VIN=2.5[mVp-p] (XTR1=H) (differential)
SIDE0 ↔ SIDE1 cross talk	GCTLK	50	_	_	dB	f=125[kHz], VIN=100[mVp-p] (differential) * 3
Differential input resistance	RID	_	8	—	kΩ	
Input conversion noise voltage	VN	_	2.5	3.7	μVrms	f=500[Hz]~1[MHz]
Input sink current	ISINK	_	180	-	μA	
Differential input voltage amplitude tolerance (1)	VIN1	-	_	5.0	mVp-p	Distortion factor 5% (with sine wave input (XTR1=L)
Differential input voltage amplitude tolerance (2)	VIN2	_	-	3.5	mVp-p	Distortion factor 5% (with sine wave input) (XTR1=H)
Common mode rejection ratio	CMRR	50	_	-	dB	f=125[kHz], VIN=100[mVp-p] *3
Power supply rejection ratio	PSRR	40	-	_	dB	f=250[kHz], VIN=100[mVp-p] *3

Preamplifier- L.P.F. - differentiator (B.P.F.)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Filter - time constant accuracy	EFIL	-10	_	+10	%	*3
Preamplifier - L.P.F. - Differentiator total gain (1)	GVDD1	40.5	44.5	48.5	dB	f=250[kHz], VIN=2.5[mVp-p] (differential) (2MB setting XTR1 = L, FILC = H)
Preamplifier - L.P.F. - Differentiator total gain (2)	GVDD2	43.5	47.5	51,5	dB	f=250[kHz], VIN=2.5[mVp-p] (differential) (2MB setting XTR1 = H, FILC = H)
Differentiator output peaking Frequency setting range	fo	0.1		0.5	MHz	Defined by set-up Typ. value

*3 RRCC=2.0 [kΩ] (XHD=L, XTR1=H, F2=L, FILC=H)

Comparator and waveform shaping

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
TDF M/M pulse width accuracy(1)	TDF1	-10	_	+10	%	XHD=H, F2=L (Typ.:2120[ns]) f=62.5[kHz]~125[kHz] *4
TDF M/M pulse width accuracy(2)	TDF2	-10	_	+10	%	XHD=H, F2=H (Typ.: 1800[ns]) f=62.5[kHz]~125[kHz] *4
TDF M/M pulse width accuracy(3)	TDF3	-10		+10	%	XHD=L, F2=H/L (Typ.:1140[ns]) f=125 [kHz]~250 [kHz] *4
RD pulse width	TRD	270	400	530	ns	Judgment level 1.5[V]
Rise time	TTLH		-	70	ns	Rise time for 0.4 [V] - 2.0 [V]
Fall time	TTHL		_	70	ns	Fall time for 2.0 [V] - 0.4 [V]
Peak shift	P. S.	_	_	1.0	%	f=250[kHz], VIN=1[mVp-p] (differential)
Output "L" level voltage	VOL	—	_	0.4	V	IOL=0.2[mA]
Output "H" level voltage	VOH	2.7			v	IOH=-15[µA] *5

*4 RRCC=2.0 [kΩ] *5 Rise level from 0.4 (V) to 70 [ns]

408

ROHM

i

BH6627FS

Write circuit

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Write current adjustment range	IWB	2.0		20	mA0-p	
Write current accuracy	ACIW	-7.0	_	+7.0	%	*6
Write current pairability	∆IWR	-1.0	-	+1.0	%	RWCC=2.4 [kΩ]
Write current supply voltage depedency	PSIW	-4.0	-0.8	+3.0	%/V	RWCC=2.4 [kΩ]
Output saturation voltage	VSATRW	_	0.4	1.0	V	IWR=12[mA]
	ILKRW1	_	-	20	μA	Unselected side
Off-state leakage current	ILKRW2	_		50	μA	Selected side
Minimum write date pulse width	TWD	70		-	ns	
Write current inner/outer track ratio accuracy	ACIWTR	+/-10	x (1-settir	ng ratio)	%	*7

*6 RWCC=1.2 [k Ω], each of XTR1, XTR2 can be set by the user. *7 Setting ratio errors based on XTR1=L, XTR2=L

Erase output

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Erase current setting range	IER	-	-	40	mA	
Output saturation voltage	VSATER	_	0.2	0.6	v	IER=40[mA]
Output leakage current	IOH		—	10	μA	Off time, ED0=ED1=Vcc

Logic input

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
"H" Input voltage	VIH	2.0	-	—	V	Except for FILC	
"L" Input voltage	VIL	-		0.8	V	Except for FILC	
Input voltage hysteresis	VH	0.15	—	-	V	Applicable to XWD, XWG, XEG and XS	
"L" Input current	111.1	_	50	100	μA	Vcc=5[V] VIL=GND Applicable to XWG, XEG, XHD, FILC	
"H" Input voltage 2	VIH2	4.2		-	V	Applicable to FILC	
"L" Input voltage 2	VIL2	<u> </u>	-	0.8	v	Applicable to FILC	

FDD read/write amplifier

FDD/HDD

ROHM

Read characteristics

	Density				11	MB		1.6MB		2MB	
	Transfer route		FILC	250[kbps]		300[kbps]		500[kbps]		500[kbps]	
	Mode	XHD	NO CARE	F	11	HI		LOW		LOW	
Input	MOOB	F2	NO CARE	LC	W	HI		н		LOW	
	Track	XTR1 (XSWF)	NO CARE	Outer track LOW	Inner track HI						
	Filter	fo [kHz]	Н	150	158	178	185	323	404	366	358(C)
		(Characteristics) * 1	LOW	t	t	t	t	300	366	338	361 (B)
i	TDF	[nSEC]	NO CARE	2120		1800		1140		1140	

(Note) *1 (B) Chebyshev's characteristics

(However, RRCC=2.0 [kΩ]

(C) Except for the high ripple Chebyshev's characteristics, 2MB inner track, all are Butterworth characteristics. Refer to filter characteristics.

Total filter peak frequency setting outer edge $f_0 = a/(RRCC [k\Omega] + 0.09) [kHz]$

FILC	"H"	"L"	
a =	313	313	250 [kbps] outer track
	330	330	250 [kbps] inner track
	376	376	300 [kbps] outer track
	387	387	300 [kbps] inner track
	675	627	500 [kbps] outer track (when $F2 = H$)
	844	765	500 [kbps] inner track (when $F2 = H$)
	765	706	500 [kbps] outer track (when $F2 = L$)
	748	754	500 [kbps] inner track (when F2 = L)

TDF time constant setting

250 [kbps] : T = 758 × RRCC [k Ω] +604 [ns] 500 [kbps] : T = 683 × RRCC [k Ω] +434 [ns] 500 [kbps] : T = 333 × RRCC [k Ω] +388 [ns]

•Write current switching ratio

	Track	Outer track <> Inne						
	XTR1		L	Н				
	XTR2	L	н	L.	Н			
	2MB	0.383	0.350	0.333	0.300			
Ĭţ	1.6MB	0.450	0.417	0.383	0.350			
Density	1MB (250kbps)	0.933	0.900	0.800	0.733			
	1MB (300kbps)	0.933	0.900	0.800	0.733			

Write current setting

$$lwr = \frac{24.0}{RWCC [k\Omega]} [mA]$$

410

ROHM

BH6627FS

Filter characteristic

Preamplifier - differentiator (B.P.F.) - L.P.F.

(A) [1M/1.6M/2M outer track] total characteristics peak frequency fo

Rohm

411

I

Measurement circuit

Fig. 2

Circuit operation

(1) Read

The input signal from the head coils from each side of the disc is amplified by the preamplifier and then differentiated. The filter time constant can be set externally. After differentiation, the differential output is input to the comparator. The time domain filter detects zero cross, and the output is converted to read data. The monostable multivibrator width can be set externally, while the read data pulse width is a constant 400ns. (2) Write

Input write data are converted to toggle movements by the internal flip-flops, operating the write driver. The write driver current is supplied by the write current generator, but the externally set current can be controlled according to density and by selecting inner track/outer track.

(3) Erase

An open collector output pin is used, and the erase current is set with a resistor between it and the head. (4) Power supply

When the low level voltage detector detects a drop in the supply voltage, writing and erasing are prohibited.

Operation notes

(1) Use a short pattern for $V_{\rm CC},$ and a sufficiently wide AGND and DGND. Keep the impedance between $V_{\rm CC}$ and GND low by inserting a bypass capacitor.

(2) Use a pattern that will minimize interference between digital signals and the head.

rohm

414

ROHM

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

- Notes when exporting
 - It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
 - Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.