

# bq2202

## **SRAM NV Controller With Reset**

#### Features

- Power monitoring and switching for nonvolatile control of SRAMs
- > Write-protect control
- Input decoder allows control of up to 2 banks of SRAM
- > 3-volt primary cell input
- 3-volt rechargeable battery input/output
- Reset output for system power-on reset
- Less than 10ns chip enable propagation delay
- ▶ 5% or 10% supply operation

#### **Pin Connections**



#### **Functional Description**

Two banks of CMOS static RAM can be battery-backed using the V<sub>OUT</sub> and conditioned chip-enable output pins from the bq2202. As the voltage input V<sub>CC</sub> slews down during a <u>power</u> failure, the two conditioned chip enable outputs,  $\overline{CE_{CON1}}$  and  $\overline{CE_{CON2}}$ , are forced inactive independent of the chip enable input  $\overline{CE}$ .

This activity unconditionally write-protects external SRAM as V<sub>CC</sub> falls to an out-of-tolerance threshold VPFD. VPFD is selected by the threshold select input pin, THS. If THS is tied to V<sub>SS</sub>, the power-fail detection occurs at 4.62V typical for 5% supply operation.

Sept. 1997 D

#### **General Description**

The CMOS bq2202 SRAM Nonvolatile Controller With Reset provides all the necessary functions for converting one or two banks of standard CMOS SRAM into nonvolatile read/write memory.

A precision comparator monitors the  $5V V_{CC}$  input for an out-of-tolerance condition. When out-of-tolerance is detected, the two conditioned chip-enable outputs are forced inactive to write-protect both banks of SRAM.

**Pin Names** 

Power for the external SRAMs is switched from the  $V_{CC}$  supply to the battery-backup supply as  $V_{CC}$  decays. On a subsequent power-up, the  $V_{OUT}$  supply is automatically switched from the backup supply to the  $V_{CC}$  supply. The external SRAMs are write-protected until a powervalid condition exists. The reset output provides power-fail and power-on resets for the system.

During power-valid operation, the input decoder selects one of two banks of SRAM.

| Vout                      | Supply output                              |
|---------------------------|--------------------------------------------|
| RST                       | Reset output                               |
| THS                       | Threshold select input                     |
| CE                        | Chip enable active low input               |
| <u>CE</u> CON1,<br>CECON2 | Conditioned chip enable outputs            |
| А                         | Bank select input                          |
| BCP                       | 3V backup supply input                     |
| BCS                       | 3V rechargeable backup supply input/output |
| NC                        | No connect                                 |
| V <sub>CC</sub>           | +5 volt supply input                       |
| V <sub>SS</sub>           | Ground                                     |

If THS is tied to  $V_{CC},$  power-fail detection occurs at 4.37V typical for 10% supply operation. The THS pin must be tied to  $V_{SS}$  or  $V_{CC}$  for proper operation.

If a memory access is in process to any of the two external banks of SRAM during power-fail detection, that memory cycle continues to completion before the memory is write-protected. If the memory cycle is not terminated within time t<sub>WPT</sub> (150 $\mu$ sec maximum), the two chip enable outputs are unconditionally driven high, writeprotecting the controlled SRAMs.

#### bq2202

As the supply continues to fall past V<sub>PFD</sub>, an internal switching device forces  $V_{OUT}$  to the internal backup energy source.  $\overrightarrow{CE}_{CON1}$  and  $\overrightarrow{CE}_{CON2}$  are held high by the  $V_{OUT}$  energy source.

During power-up, V<sub>OUT</sub> is switched back to the 5V supply as V<sub>CC</sub> rises above the backup cell input voltage sourcing V<sub>OUT</sub>. Outputs  $\overline{CE}_{CON1}$  and  $\overline{CE}_{CON2}$  are held inactive for time t<sub>CER</sub> (120ms maximum) after the power supply has reached V<sub>PFD</sub>, independent of the  $\overline{CE}$  input, to allow for processor stabilization.

During power-valid operation, the CE input is passed through to one of the two  $\overline{CE}_{CON}$  outputs with a propagation delay of less than 10ns. The  $\overline{CE}$  input is output on one of the two  $\overline{CE}_{CON}$  output pins; depending on the level of bank select input A, as shown in the Truth Table.

Bank select input A is usually tied to a high-order address pin so that a large nonvolatile memory can be designed using lower-density memory devices. Nonvolatility and decoding are achieved by hardware hookup as shown in Figure 1. The reset output  $(\overline{RST})$  goes active within tpFD (150µsec maximum) after VpFD, and remains active for a minimum of 40ms (120ms maximum) after power returns valid. The  $\overline{RST}$  output can be used as the power-on reset for a micro-processor. Access to the external RAM may begin when  $\overline{RST}$  returns inactive.

#### Energy Cell Inputs—BC<sub>P</sub>, BC<sub>S</sub>

Two backup energy source inputs are provided on the bq2202—a primary cell BCp and a secondary cell BCS. The primary cell input is designed to accept any 3V primary battery (non-rechargeable), typically some type of lithium chemistry. If a primary cell is not to be used, the BCp pin should be grounded. The secondary cell input BCS is designed to accept constant-voltage current-limited rechargeable cells.

During normal 5V power valid operation, 3.3V is output on the BCs pin and is current-limited internally.



Figure 1. Hardware Hookup (5% Supply Operation)

If a secondary cell is not to be used, the BCs pin must be tied directly to VSS. If both inputs are used, during power failure the VOUT and CECON outputs are forced high by the secondary cell is loaded by the data retention current of the SRAM until the voltage at the BCs pin falls below 2.5V. When and if the voltage at BCs falls below 2.5V, an internal isolation switch automatically transfers the load from the secondary cell to the primary cell.

To prevent battery drain when there is no valid data to retain, VOUT,  $\overrightarrow{CECON1}$ , and  $\overrightarrow{CECON2}$  are internally isolated from BCp and BCs by either:

- Initial connection of a battery to BC<sub>P</sub> or BC<sub>S</sub> or
- Presentation of an isolation signal on CE.

A valid isolation signal requires  $\overline{CE}$  low as V<sub>CC</sub> crosses both V<sub>PFD</sub> and V<sub>SO</sub> during a power-down. See Figure 2. Between these two points in time,  $\overline{CE}$  must be brought to V<sub>CC</sub> \* (0.48 to 0.52) and held for at least 700ns. The isolation signal is invalid if  $\overline{CE}$  exceeds V<sub>CC</sub> \* 0.54 at any point between V<sub>CC</sub> crossing V<sub>PFD</sub> and V<sub>SO</sub>.

The battery is connected to  $V_{OUT}, \ \overline{CE}_{CON1}, \ and \ \overline{CE}_{CON2}$  immediately on subsequent application and removal of  $V_{CC}.$ 



Figure 2. Battery Isolation Signal

#### **Truth Table**

| Ing | out | Out                | put                |
|-----|-----|--------------------|--------------------|
| CE  | А   | CE <sub>CON1</sub> | CE <sub>CON2</sub> |
| Н   | Х   | Н                  | Н                  |
| L   | L   | L                  | Н                  |
| L   | Н   | Н                  | L                  |

| Symbol            | Parameter                                                             | Value        | Unit | Conditions                  |
|-------------------|-----------------------------------------------------------------------|--------------|------|-----------------------------|
| VCC               | DC voltage applied on $V_{\mbox{CC}}$ relative to $V_{\mbox{SS}}$     | -0.3 to +7.0 | V    |                             |
| VT                | DC voltage applied on any pin excluding $V_{CC}$ relative to $V_{SS}$ | -0.3 to +7.0 | v    | $V_T \!\leq\! V_{CC} + 0.3$ |
|                   |                                                                       | 0 to +70     | °C   | Commercial                  |
| TOPR              | Operating temperature                                                 | -40 to +85   | °C   | Industrial "N"              |
| T <sub>STG</sub>  | Storage temperature                                                   | -55 to +125  | °C   |                             |
| T <sub>BIAS</sub> | Temperature under bias                                                | -40 to +85   | °C   |                             |
| TSOLDER           | Soldering temperature                                                 | 260          | °C   | For 10 seconds              |
| IOUT              | V <sub>OUT</sub> current                                              | 200          | mA   |                             |

### **Absolute Maximum Ratings**

**Note:** Permanent device damage may occur if **Absolute Maximum Ratings** are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.

#### **Recommended DC Operating Conditions (TA = TOPR)**

| Symbol | Parameter                 | Minimum | Typical | Maximum               | Unit | Notes          |
|--------|---------------------------|---------|---------|-----------------------|------|----------------|
|        | Supply voltage            | 4.75    | 5.0     | 5.5                   | V    | $THS = V_{SS}$ |
| VCC    |                           | 4.50    | 5.0     | 5.5                   | V    | $THS = V_{CC}$ |
| VBCP   |                           | 2.0     | -       | 4.0                   |      |                |
| VBCS   | Backup cell input voltage | 2.5     | -       | 4.0                   | V    | VCC < VBC      |
| Vss    | Supply voltage            | 0       | 0       | 0                     | V    |                |
| VIL    | Input low voltage         | -0.3    | -       | 0.8                   | V    |                |
| VIH    | Input high voltage        | 2.2     | -       | V <sub>CC</sub> + 0.3 | V    |                |
| THS    | Threshold select          | -0.3    | -       | V <sub>CC</sub> + 0.3 | V    |                |

Note: Typical values indicate operation at  $T_A = 25^{\circ}C$ ,  $V_{CC} = 5V$  or  $V_{BC}$ .

| Symbol            | Parameter                                         | Minimum               | Typical          | Maximum | Unit | Conditions/Notes                                                                  |
|-------------------|---------------------------------------------------|-----------------------|------------------|---------|------|-----------------------------------------------------------------------------------|
| ILI               | Input leakage current                             | -                     | -                | ± 1     | μΑ   | VIN = VSS to VCC                                                                  |
| Voh               | Output high voltage                               | 2.4                   | -                | -       | V    | IOH = -2.0mA                                                                      |
| VOHB              | V <sub>OH</sub> , backup supply                   | V <sub>BC</sub> - 0.3 | -                | -       | V    | $V_{BC} > V_{CC}$ , $I_{OH} = -10 \mu A$                                          |
| VOL               | Output low voltage                                | -                     | -                | 0.4     | V    | $I_{OL} = 4.0 mA$                                                                 |
| I <sub>CC</sub>   | Operating supply current                          | -                     | 3                | 6       | mA   | No load on VOUT, $\overline{CE}_{CON1}$ , and $\overline{CE}_{CON2}$              |
|                   |                                                   | 4.55                  | 4.62             | 4.75    | V    | $THS = V_{SS}$                                                                    |
| VPFD              | Power-fail detect voltage                         | 4.30                  | 4.37             | 4.50    | V    | THS = V <sub>CC</sub>                                                             |
| VSO               | Supply switch-over voltage                        | -                     | V <sub>BC</sub>  | -       | V    |                                                                                   |
| ICCDR             | Data-retention mode current                       | -                     | -                | 100     | nA   | No load on V <sub>OUT</sub> , $\overline{CE}_{CON1}$ , and $\overline{CE}_{CON2}$ |
|                   |                                                   | Vcc - 0.2             | -                | -       | V    | VCC > VBC, IOUT = 100mA                                                           |
| VOUT1             | VOUT voltage                                      | Vcc - 0.3             | -                | -       | V    | VCC > VBC, IOUT = 160mA                                                           |
| VOUT2             | VOUT voltage                                      | VBC - 0.2             | -                | -       | V    | $V_{CC} < V_{BC}$ , $I_{OUT} = 100 \mu A$                                         |
|                   |                                                   | -                     | V <sub>BCS</sub> | -       | V    | $V_{BCS} > 2.5V$                                                                  |
| V <sub>BC</sub>   | Active backup cell voltage                        | -                     | VBCP             | -       | V    | $V_{BCS} < 2.5V$                                                                  |
| R <sub>BCS</sub>  | BC <sub>S</sub> charge output internal resistance | 500                   | 1000             | 1750    | Ω    | $V_{BCSO} \ge 3.0V$                                                               |
| V <sub>BCSO</sub> | BC <sub>S</sub> charge output voltage             | 3.0                   | 3.3              | 3.6     | v    | $V_{CC} > V_{PFD}$ , $\overline{RST}$ inactive, full charge or no load            |
| I <sub>OUT1</sub> | V <sub>OUT</sub> current                          | -                     | -                | 160     | mA   | $V_{OUT} \ge V_{CC} - 0.3V$                                                       |
| I <sub>OUT2</sub> | V <sub>OUT</sub> current                          | -                     | 100              | -       | μA   | $V_{OUT} \geq V_{BC} - 0.2V$                                                      |

### DC Electrical Characteristics (TA = TOPR, VCC = 5V $\pm$ 10%)

Note: Typical values indicate operation at  $T_A = 25^{\circ}C$ ,  $V_{CC} = 5V$  or  $V_{BC}$ .

### Capacitance (TA = 25°C, F = 1MHz, VCC = 5.0V)

| Symbol | Parameter          | Minimum | Typical | Maximum | Unit | Conditions          |
|--------|--------------------|---------|---------|---------|------|---------------------|
| CIN    | Input capacitance  | -       | -       | 8       | pF   | Input voltage = 0V  |
| COUT   | Output capacitance | -       | -       | 10      | pF   | Output voltage = 0V |

**Note:** This parameter is sampled and not 100% tested.

### **AC Test Conditions**

| Parameter                                | Test Conditions                   |
|------------------------------------------|-----------------------------------|
| Input pulse levels                       | 0V to 3.0V                        |
| Input rise and fall times                | 5ns                               |
| Input and output timing reference levels | 1.5V (unless otherwise specified) |



Figure 3. Output Load

### **Power-Fail Control** (TA = TOPR)

| Symbol           | Parameter                                      | Min.            | Тур. | Max.            | Unit | Conditions                                                                                                 |
|------------------|------------------------------------------------|-----------------|------|-----------------|------|------------------------------------------------------------------------------------------------------------|
| tPF              | V <sub>CC</sub> slew 4.75 to 4.25V             | 300             | -    | -               | μs   |                                                                                                            |
| t <sub>FS</sub>  | V <sub>CC</sub> slew 4.25 V to V <sub>SO</sub> | 10              | -    | -               | μs   |                                                                                                            |
| tPU              | VCC slew 4.25 to 4.75V                         | 0               | -    | -               | μs   |                                                                                                            |
| tCED             | Chip-enable propagation delay                  | -               | 7    | 10              | ns   |                                                                                                            |
| tCER             | Chip-enable recovery time                      | t <sub>RR</sub> | -    | t <sub>RR</sub> | ms   | Time during which SRAM is write-<br>protected after V <sub>CC</sub> passes V <sub>PFD</sub> on<br>power-up |
| t <sub>RR</sub>  | VPFD to $\overline{\text{RST}}$ inactive       | 40              | 80   | 120             | ms   | $\frac{Time}{RST}$ after $V_{CC}$ becomes valid, before $\overline{RST}$ is cleared                        |
| tAS              | Input A set up to $\overline{CE}$              | 0               | -    | -               | ns   |                                                                                                            |
| t <sub>WPT</sub> | Write-protect time                             | t <sub>R</sub>  | -    | t <sub>R</sub>  | μs   | Delay after $V_{CC}$ slews down past $V_{PFD}$ before SRAM is write-protected                              |
| t <sub>R</sub>   | $V_{PFD}$ to $\overline{RST}$ active           | 40              | 100  | 150             | μs   | Delay after $V_{CC}$ slews down past $V_{PFD}$ before $\overline{RST}$ is active                           |

Note: Typical values indicate operation at  $T_A = 25^{\circ}C$ ,  $V_{CC} = 5V$ .

## **Power-Down Timing**



## **Power-Up Timing**



## Address-Decode Timing



TD220204.eps

## bq2202

#### **16-Pin SOIC Narrow**



#### 16-Pin SOIC Narrow (SN)

| Dimension | Minimum | Maximum |
|-----------|---------|---------|
| Α         | 0.060   | 0.070   |
| A1        | 0.004   | 0.010   |
| В         | 0.013   | 0.020   |
| С         | 0.007   | 0.010   |
| D         | 0.385   | 0.400   |
| Е         | 0.150   | 0.160   |
| e         | 0.045   | 0.055   |
| Н         | 0.225   | 0.245   |
| L         | 0.015   | 0.035   |

All dimensions are in inches.



## 16-Pin DIP Narrow



#### 16-Pin DIP Narrow (PN)

| Dimension | Minimum | Maximum |
|-----------|---------|---------|
| А         | 0.160   | 0.180   |
| A1        | 0.015   | 0.040   |
| В         | 0.015   | 0.022   |
| B1        | 0.055   | 0.065   |
| С         | 0.008   | 0.013   |
| D         | 0.740   | 0.770   |
| Е         | 0.300   | 0.325   |
| E1        | 0.230   | 0.280   |
| е         | 0.300   | 0.370   |
| G         | 0.090   | 0.110   |
| L         | 0.115   | 0.150   |
| S         | 0.020   | 0.040   |

All dimensions are in inches.

| Change No. | Page No. | Description                                                     | Nature of Change                                                     |
|------------|----------|-----------------------------------------------------------------|----------------------------------------------------------------------|
| 1          | 2        | Deleted last sentence                                           | Clarification                                                        |
| 1          | 5        | V <sub>BCSO</sub> —BC <sub>S</sub> charge output voltage        | Was: 3.15 min, 3.3 typ, 3.45 max<br>Is: 3.0 min, 3.3 typ, 3.6 max    |
| 2          | 5        | Changed maximum charge output internal resistance ( $R_{BCS}$ ) | Was: 1500Ω<br>Is: 1750Ω                                              |
| 3          | 1, 4, 5  | 10% supply operation                                            | Was: THS tied to V <sub>OUT</sub><br>Is: THS tied to V <sub>CC</sub> |

### **Data Sheet Revision History**

Note:

Change 1 = Dec. 1992 B changes from Sept. 1991 A. Change 2 = Nov. 1994 C changes from Dec. 1992 B.

Change 3 = Sept. 1997 D changes from Nov. 1994 C.

#### **Ordering Information**



#### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated