
.

APPLICATIONS:

Steppers and Encoders

Home Appliance
Controls Integrated with
Voice Control

Smart Appliances

Home Security

Digital Telephone
Answering Machine

Engine Management

Power Line Modem

Servo Drives

Automotive Control

Electric Lawn Equipment

Noise Cancellation

Internet Appliances

IP Phone

Modems

Magnetic Card Readers

Security

Digital Speakers

Voice Recognition
Systems

“Hands-free” Kits

Digital Cameras

Telecom Test Equipment

Fuel Management
Systems

and more.
Preliminary Information

Application Brief
DSP56824 - Interfacing Two Codecs Without External
Glue Logic

Although using only one Codec is most common in DSP applications, in many
telephony (and other) applications, we need to interface two Codecs to the digital
signal processor. Figure 1 shows an example using only one DSP to filter the
signals from the Far End to the Near End and from the Near End to the Far End.
Note the DSP is running two Filter Algorithms.

Figure 1. DSP Running Two Digital Filters

But, how can we interface two Codecs to the DSP56824 if it has only one SSI
interface? The answer is to use the SSI network mode (please refer to the
DSP56824 User’s Manual for more details about SSI operation).

In the network mode the SSI is able to receive and/or transmit from 2 to 32 words
per sampling frame. The idea basically is to configure the SSI for Network Mode
with two slots per frame, doing the data exchanges (read and write) to one Codec
on the first slot and the data exchanges to the other Codec on the second slot of
the frame.

But, the MC145483 needs a Frame Sync clock to synchronize the input/output
serial PCM data! Once the Frame Sync clock generated by the SSI is
synchronized to the first slot, if we use the same Frame Sync clock to drive both
Codecs, both will transmit and receive data on the first slot; and so, we will have a
bus error.

A simple way to solve that conflict is configure the SSI options to generate the
Frame Sync clock to Codec2.

The MC145483 FST (frame sync transmit) and FSR (frame sync receive) pins are
long and short frame sync compatible (please refer to the MC145483/D technical
data for further information); so, we can drive these Codec pins with a one-word
length Frame Sync. Figure 6 shows the timing for one-word length Frame Sync
clock and two words (slots) per frame.

Note in Figure 2, Codec2 Frame Sync is the negative form of Codec1 Frame Sync
Clock. So, all we need to do is use a NOT gate to negate the Frame Sync to
Codec2. Better, we can just configure the SSI to generate a Frame Sync active
high in the STFS pin to feed Codec1 and a Frame Sync active low on the SRFS
pin to feed Codec2. The hardware configuration is shown in Appendix 2.

BR1543/D

Figure 2. One-word length Frame Sync

The SSI setup (describing the SSI configuration), TX and RX routines are listed in
Appendix 1. Note the SSI SRCK pin was left as GPIO in order to be used as
Codec mode select.

Also, due to enabling the receiver and the transmitter buffers, the receiver and
transmitter interrupt routines perform two read/write operations at each interrupt
request attempt.

To assure the data to Codec1 is being transmitted in the first slot and the data to
Codec2 is being transmitted in the second slot, the transmitter interrupt handler
routine checks the SSI TFS flag before choosing the sequence in which the data
will be written to the TX buffer.

In a similar way, the receiver interrupt handler routine checks the SSI RFS flag to
determine if the first data on the FIFO receiver buffer is from Codec1 or Codec2.

Appendix - 1. Code Example

/* Global Data */
__fixed__ rx_buffer[2];
__fixed__ tx_buffer[2];

unsigned char SSI_NewData;
/*===
; Configure the SSI
;==
; Asynchonous Mode
; Network Mode / 2 slots per frame / 16 bits per word
; 256 kHz bit clock / 8 kHz Frame Rate
;
; Core CLK Prescale Bit CLK Word Div Frame Div Frame CLK
; -------- -------- ------- -------- --------- ---------
; 32.768MHz =>/128 =>256kHz =>/16 => /2 => 8KHz
;==*/
asm void SSI_SET_UP () {
 move #0,y0
 move y0,SSI_NewData
 move y0,x:SCR2 //; disable the SSI
 bfset #0x2f00,x:PCC //; SRCK left as GPIO

 move #0x611f,x:SCRRX //; PSR=0, WL=3, DC=1, PM=31
 move #0x611f,x:SCRTX //; PSR=0, WL=3, DC=1, PM=31
 move #0xFF08,x:SCR2 //; RIE=1, TIE=1, RE=1, TE=1,
 //; RBF=1, TBF=1, RXD=1,TXD=1
 //; SYN=0, SHFD=0,SCKP=0,SSIEN=0,
 //; NET=1, FSI=0, FSL=0, EFS=0
 move #0x0400,x:SCSR //; RSHFD=0,RSCKP=0,RFSI=1, RFSL=0,
 //; REFS=0, RDF=0,TDE=0, ROE=0,

 //; TUE=0, RFS=0, TFS=0, RDBF=0, TDBE=0
bfset #0x0200,x:IPR //; Enable SSI interrupts

 bfset #0x0010,x:SCR2 //; Enable SSI
 rts
}
/*===
; Read Data From SSI – Receive and Rec. with exc. handler
;==
; Read data from First slot into Fills rx_buffer[0] and data from ; Second slot
to rx_buffer[1]. Returns SSI_NewData = 1
;==*\
asm void SSI_RX() {
 lea (SP)+
 move y0,x:(SP)+

.

 move r0,x:(SP)+
 move m01,x:(SP) //; push CPU registers
 move #rx_buffer,r0 //; points to rx_buffer
 move #$ffff,m01
 move x:SCSR,y0 //; read the status reg to clear flags
 brclr #RFS,y0,RxSecondSlot
 //; read rx_buffer[0] and then rx_buffer[1]
 move x:SRX,y0
 move y0,x:(r0)+ //; read the SRX into rx_buffer[0]
 move x:SRX,y0
 move y0,x:(r0) //; read the SRX into rx_buffer[1]
 bra RxExit
RxSecondSlot:
 //; read rx_buffer[1] and then rx_buffer[0]
 lea (r0)+ //; r0 points to rx_buffer[1]
 move x:SRX,y0
 move y0,x:(r0)- //; read the SRX into rx_buffer[1]
 move x:SRX,y0
 move y0,x:(r0) //; read the SRX into rx_buffer[0]
RxExit:
 bfset #$0001,SSI_NewData //; set rx flag
 pop m01
 pop r0
 pop y0 //; Pop CPU registers
 rti
}
/*===
; Transmit Data Thru SSI – TRX and TRX with exc. handler
;==
;Transmits tx_buffer[0] on the First Slot and tx_buffer[1] on
; The second slot.
;===+======*/
asm void SSI_TX () {
 lea (SP)+
 move y0,x:(SP)+
 move r0,x:(SP)+
 move m01,x:(SP) //; push CPU registers
 move #tx_buffer,r0 //; r0 points to tx_buffer
 move #0xffff,m01
 move x:SCSR,y0 //; read the status reg to clear flags
 brset #TFS,y0,TxFirstSlot
 //; Send tx_buffer[0] and then tx_buffer[1]
 move x:(r0)+,y0
 move y0,x:STX //; transfer tx_buffer[0] to STX
 move x:(r0),y0
 move y0,x:STX //; transfer tx_buffer[1] to STX
 bra TxExit
TxFirstSlot:
 //; Send tx_buffer[1] and then tx_buffer[0]
 lea (r0)+ //; r0 points to tx_buffer[1]
 move x:(r0)-,y0
 move y0,x:STX //; transfer tx_buffer[1] to STX
 move x:(r0),y0
 move y0,x:STX //; transfer tx_buffer[0] to STX
TxExit:
 pop m01
 pop r0
 pop y0 //; Pop CPU registers
 rti
}

2000 Motorola, Inc. Motorola is a registered trademark and OnCE,
DigitalDNA and the DigitalDNA logo are trademarks of Motorola, Inc.

DSP56F80X
CUSTOMER SUPPORT:

Technical Support:
www.motorola.com/semiconductors/
dsp/support
dsphelp@dsp.sps.mot.com
1-800-521-6274

Website:
www.motorola.com/
semiconductors/dsp

Literature Distribution Center
for Motorola:
1-800-441-2447

Other Inquiries:
Contact your Motorola sales
representative or authorized
distributor

Disclaimer:
This sheet may not include
all the details necessary
to completely develop this design.
It is provided as a reference only
and is intended to demonstrate
the variety of applications
for the device.
Appendix - 2. Schematic

