8K×8 bit SRAM BR6265BF-N10SL

The BR6265BF-N10SL is an 8192 word \times 8 bit CMOS static RAM. It runs on a 5V single power supply, and input can be directed coupled with TTL. Current consumption in the non-selected state is extremely low at 20 μ A (max.), and memory information can be retained even at a low voltage of 2V, making this product ideal for battery backup operations.

Both the access and cycle timing are 100ns, facilitating timing design.

Applications General-purpose

Features

- 1) SRAM with an 8192×8 bit configuration.
- 2) 5V single power supply voltage with $\pm 10\%$ fluctuation tolerance.
- 3) High speed access time of 100ns.
- 4) TTL compatible input/output.

Block diagram

- 5) Input and output use the same pin, and there are 3 output states.
- No clock is necessary (asynchronous static circuit).
- 7) Input and output data are in the same phase.
- 8) Low power consumption.

rohm

BR6265BF-N10SL

ļ

●Absolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	0.5 *1 ~7.0	v
Power dissipation	Pd	850*2	mW
Operating temperature range	Topr	0~70	Ĵ
Storage temperature	Tstg	-55~125	Ċ
I/O voltage	V	0.5~Vcc+0.5	v

*1 At pulse width of 50 ns: -3.0 V (min.)

*2 Reduced by 8.5mW for each increase in Ta of 1 $^\circ\!\!C$ over 25 $^\circ\!\!C.$

●Recommended operating conditions (Ta=25℃)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	4.5	5.0	5.5	v
"H" input voltage	Viн	2.2	_	Vcc+0.5	٧
"L" input voltage	VIL	-0.3		0.8	٧
Ambient temperature	Та	0		70	°C

Pin description

Pin No.	Pin Name	Function
1	NC	Internal chip and not connected
2~10、21、 23~25	A0~A12	8192-byte memory address input
11~13、 15 ~19	1/00~1/07	8-bit data I/O
20	CE1	Chip enable control input
26	CE2	Chip enable control input
22	ŌĒ	Output enable control input
27	WE	Write enable control input
28	Vcc	5V±10% power supply
14	Vss	Reference voltage for all input/output, 0 V

132

ROHM

BR6265BF-N10SL

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement Circuit
"L" input voltage	V⊫	-0.3*1	-	0.8	V		-
"H" input voltage	Viн	2.2	_	Vcc+0.5	V		_
"L" output voltage	Vo∟	0	-	0.4	V	loL=2.1mA	Fig.1
	M	2.4	-	Vcc	V	Ion=-1.0mA	Fig.2
"H" output voltage	Vон	Vcc×0.8	_	Vcc	٧	юн=-0.1mA	
Input leakage current	lu	_	_	±1 [′]	μA	VIN=0~Vcc	Fig.3
Output leakage current	llo	. —	_	±1	μA	Vour=0~Vcc	Fig.4
Augrana appreting ourrant	ICCA1	_		40	mA	CE1=VIL,CE2=VIH,I / O: OPEN Minimum cycle time	Fig.5
Average operating current			-	10	mA	CE1=ViL,CE2=ViH,I/O:OPEN f=1MHz	Fig.5
	lse	-	_	3	mA	CE1=Vin or CE2=ViL	_
Standby current	ISB1	-	_	20	μA	CE1≥V∞-0.2V, CE2≧V∞-0.2V or CE2≦0.2V	Fig.6
	ISB2	-	_	20	μA	CE2≦0.2V	_

*1 At input voltage pulse width of 50 ns or less : -3.0 V

Memory ICs

ROHM

133

.

Measurement circuit

Data sets all output to LOW (Data 00))

Fig. 1 LOW output voltage measurement circuit

Fig. 3 Input leakage measurement circuit

Fig. 5 Current consumption measurement circuit

Data sets all output to HIGH (Data FF)

Fig. 2 HIGH output voltage measurement circuit

Fig. 6 Standby current measurement circuit

134

ROHM

BR6265BF-N10SL

Operating modes

	Control pin			Mada	1/0	Devene	
ŌE	CE1	CE2	WE	Mode	1/0	Power consumption	
Х	н	Х	X	Wait state	High impedance	Standby state	
х	X	L	x	Wait state	High impedance	Standby state	
н	L	Н	Н	Output disabled	High impedance	Operating state	
L	L	н	Н	Read	Data output	Operating state	
х	L	н	L	Write	Data output	Operating state	

X: Either VIL or VIH

●AC test conditions (Ta=0 to 70°C, 5V±10%) Input pulse level : 0.8 to 2.4V Input rise/fall time : 5ns I/O timing level : 1.5V Output load : 1 TTL gate and CL = 100pF

Read cycle

Parameter	Symbol	Min.	Max.	Unit
Read cycle time	tec	100		ns
Address access time	taa	_	100	ns
CE1 access time	tco1	-	100	ns
CE2 access time	tco2	_	100	ns
OE access time	toe	_	40	ns
Output hold time	toн	10	-	ns
CE1 output set time	tLZ1	10	-	ns
CE2 output set time	ti.ze	10		ns
OE output reset time	to∟z	5	-	ns
OE1 deselect output floating	tHz1	_	35	ns
OE2 deselect output floating	tHZ2		35	ns
OE disable output floating	tонz	_	35	ns

rohm

•Read cycle timing chart 1 ($\overline{CE1} = \overline{OE} = V_{IL}$, $CE2 = \overline{WE} = V_{IH}$)

Fig.7

ROHM

BR6265BF-N10SL

Write cycle

Parameter	Symbol	Min.	Max.	Unit
Write cycle time	twc	100	-	ns
Chip select time	tow	80		ns
Address valid time	taw	80		ns
Address setup time	tas	0	-	ns
Write pulse width	twp	60	-	ns
WE output delay time	twa	0		ns
CE1, CE2 output delay time	twe1	0	-	ns
WE • output floating time	twнz	_	35	ns
Input data set time	tow	40	_	ns
Input data hold time	toн	0	_	ns
WE • output set time	tow	5	_	ns

Memory ICs

•Write cycle timing chart 1 (WE control)

ROHM

137

SRAM

Fig.10

138

ROHM

ł

ł

While the I/O pin Is in output state, Input signals should not be applied which are in reverse phase to the output.
The contents noted in this document may fall under the jurisdiction of services pertaining to overseas exchange rates and overseas control regulations (services pertaining to design, construction, specifications), and may require special handling.

ROHM

139

BR6265BF-N10SL

Data retention characteristics at low power supply voltage (Ta = 0 to 70°C) : SL version products

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Data retention power supply voltage	VDR	2.0	-	5.5	v	CE1≧V∞-0.2V, CE2≧V∞-0.2V or CE2≦ 0.2V
Data retention current	ICCDR*	_	-	10	μA	$\frac{CE1}{E}Vcc-0.2V, CE2 \ge Vcc-0.2V \\ or CE2 \le 0.2V, Vcc=3.0V$
CS data retention time	todr	0	-	-	ns	
Operating recovery time	tn	5	_		ms	

*1 μ A (Max.), when Ta=0~40°C

Data retention waveform at low power supply voltage

140

ROHM

BR6265BF-N10SL

External dimensions (Units: mm)

Memory ICs

ROHM

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

Notes when exporting

- It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
- Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.