Clock Generator for Video CD Systems BU2173F

The BU2173F is an IC that generates the CPU clock signal, system clock signal and video clock signal used in video CD systems. A single crystal resonator can generate three different oscillation frequencies.

Applications

Video CD systems

Features

- 1) Three frequency clock signals can be generated with a single attached crystal resonator.
- 2) Two internal PLL channels.

- 3) Internal loop filter, eliminating the need to attach a loop.
- 4) Single 5.0V power supply.
- 5) SOP 18-pin package.

Absolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limits	Unit V	
Power supply voltage	VDD	-0.3~7.0		
Power dissipation	Pd	450	mW	
Operating temperature	Topr	-5~70	C'	
Storage temperature	Tstg	-25~125	°	

* Reduced by 4.5 mW for each increase in Ta of 1°C over 25°C.

Recommended operating conditions (Ta=25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	VDD, AVDD, VDDIO	4.75~5.25	v
Input voltage, high level	Vн	0.8Voo~Voo	v
Input voltage, low level	Vı∟	0.0~0.2Vpp	v
Operating temperature	Topr	-5~70	Ĉ

Clock generator

Pin No.	Pin name	Function			
1	VDD	Digital Vdd	_		
2	TSTO	Open in the normal mode (used for testing)	в		
3	XTALI	Reference oscillation input	С		
4	XTALO	Reference oscillation output	С		
5	CTRLA	GD-G/VCD clock switching			
6	CTRLB	Stays at the high level when the IC is in the normal mode			
7	CTRLC	CD-G PAL/NTSC clock switching			
8	TSTI	Connect to Vss when the IC is in the normal mode (used for testing)			
9	Vss	Digital ground			
10	Avss	Analog ground			
11	FOUT3	Not used (operi when the IC is in the normal mode)			
12	Vssio	I/O ground	_		
13	FOUT2	Clock output 2	В		
14	TEST	Setting the test mode (connect to Vss when the IC is in the normal mode)	A		
15	FOUT1	Clock output 1	В		
16	VDDIO	I/O Vdd	_		
17	FOUT4	Clock output 4	В		
18	Avod	Analog Vdd	_		

50

ROHM

BU2173F

Input/output circuits
Type A

Туре В

●Electrical characteristics (unless otherwise noted, Ta=25℃, Vbb=5.0V, Avbb=5.0V, IOvbb=5.0V)

Parameter		Symbol	Min,	Тур.	Max.	Unit	Conditions
							Conditions
Input current, low level			-300.0	0.0	300.0	μA	
Input current, high level	1	lн	-300.0	0.0	300.0	μA	
Input voltage, low level		ViL	-	1	1.0	v	
Input voltage, high leve	ļ	νн	4.0		_	v	
Output voltage, low leve	əl	Vo∟	—	Ι	0.5	v	loL=4.0mA
Output voltage, high lev	/el	Vон	2.4			v	lон=-4.0mA
Circuit current		łop	-	30	50	mA	fxtal = 13.5 MHz, no load
Reference frequency		f REF	_	13.5	_	MHz	Use with CTRLB at the high level
Output frequency	(1)	fı	-	40.5	—	MHz	f1=frer×96/16/2
Output frequency	(2)	f2A	-	27.000	_	MHz	fza=fref×96/16/3 CTRLA=H, CTRLB=H, CTRLC=H
		f28		28.375	_	MHz	f28=fREF×227/54/2 CTRLA=L, CTRLB=H, CTRLC=L
		f2C	-	28.636	_	MHz	f _{2C} =f _{REF} ×140/33/2 CTRLA=L, CTRLB=H, CTRLC=H
Output frequency	(4)	f4	-	3.375		MHz	f4=free×1/4
Jitter				1.0	_	nSec	Measure at f2A, f2B, f2C (reference)
Reference frequency	(2)	freef2	<u> </u>	14.318	_	MHz	Use with CTRLB at the low level
Output frequency	(1)	f18	-	40.5	_	MHz	f18=fref2×98/35/2
Output frequency	(2)	f2D	-	27.000	_	MHz	f2D=fREF2×98/35/3 CTRLA=H, CTRLB=L, CTRLC=H
		f2E	_	28.636	_	MHz	f2E=fREP2×80/20/2 CTRLA=L, CTRLB=L, CTRLC=H
Output frequency	(4)	f49		3.579	-	MHz	f4B=fREF2×1/4

ROHM

51

Clock generator

Personal computers

Note: Certain crystal resonators may require setting XTALI and XTALO to the optimum allowable values.

Note: Certain crystal resonators may require setting XTALI and XTALO to the optimum allowable values.

52

ROHM

Attached components

- R1: To keep the voltage of Avdd effectively low, and to enhance signal stability by separating Avdd and Dvdd with an impedance. Be sure to attach.
- R2: Needed to provide a feedback resistance for the crystal resonator.
- C1/C2: When fo must be adjusted according to the crystal resonator used, or when the crystal resonator results in unnecessary oscillation points, attach a PF and adjust according to the value for this capacitor.
- X1: Use a crystal resonator with an oscillation frequency of 13.5MHz or 14.318MHz.

External dimensions (Units: mm)

Clock generator

53

ROHM

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

- Notes when exporting
 - It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
 - Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.