PLL frequency synthesizer for tuners BU2622S

The BU2622S is a PLL frequency synthesizer IC designed for use in high-fidelity audio systems, car stereos, and CD radio cassettes. Featuring low power consumption, low superfluous radiation, a frequency measurement counter, and timer output, this chip is ideal for high-performance systems.

Applications

Mini components, car stereos, radio cassettes, receivers, and other frequency generating devices

Features

- 1) Built-in high-speed prescaler can divide 130MHz VCO.
- Low power-consumption (during operation :
 6.0mA PLL OFF 300 μ A Typ.)
- Seven standard frequencies : 50kHz, 25kHz, 12.5kHz, 10kHz, 9kHz, 5kHz, and 1kHz.
- 4) Counter for intermediate frequency detection.
- 5) Unlock detection circuit.
- 6) Six output ports.
- SD input.
- 8) Timer output.
- 9) Serial data input (CE.CK.DA)

180

ROHM

BU2622S

i :

Parameter	Symbol	Limits	Unit	Conditions		
Supply voltage	VDD	-0.3~7.0	v	V _{DD}		
Maximum input voltage 1	Vin	-0.3~7.0	v	CE, CK, DA, SD		
Maximum input voltage 2	Vinz	-0.3~V _{DD} +0.3	v	XIN, FMIN, AMIN, IFIN		
Maximum output voltage 1	V _{OUT1}	-0.3~10.0	v	Po, P1, P2, P3, P4, TM, CE		
Maximum output voltage 2	Vout2	-0.3~Vop+0.3	v	PD, P₅, XOUT		
Maximum output current	' lou⊤	0~4.0	mA	Po, Pa, P2, P3, P4, TM, CE		
Power dissipation	Pd	450*	mW			
Operating temperature	Topr	-25~75	ĉ			
Storage temperature	Tstg	-55~125	°C			

* When used with Ta at greater than 25 degrees Celsius, derate the power by 4.5 mW for every degree above 25 degrees.

Recommended operating conditions ($Ta = 25^{\circ}C$)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	V _{DD} 1	4.0	1	6.0	V

Explanation of terminals

Farameter		Symbol	IVIII.	тур.	Wax.	0111				
Supply vo	ltage	V _{DD} 1	4.0	—						
Explana	tion of termi	nals								
Pin No.	Symbol	Terminal	name			Function		I/O		
1	XOUT	Crystal oscillati	on	For gen	eration of s	tandard freque	ncy and internal clock.	OUT		
2	XIN	terminal		Connec	ted to 7.2 N	IHz crystal osc	illator.	IN		
3	NC	Unused termina	al	Not rela	ted to the c	ircuits.				
4	CE	Chip enable					with the rise of CK and			
5	СК	Clock signal			read to the internal shift register. DA is then latched at the			IN		
6	DA	Serial data			timing of the fall of CE. Also, output data is output from the CD terminal synchronous to the rise of CK.					
7	CD	Count data		Frequer	Frequency data and unlock data are output.					
8	P0									
9	P1	Output port		Control	Controlled on the basis of input data.					
10	· P3									
11	TM	Timer output								
12	P5	Output part	Output part		Output port Controlled on the basis of input data.		Controlled on the basis of input data.		CMOS/3-state	
13	P4			Control	Nch open drain					
14	SD	Input port						IN		
15	IFIN	IF input		Interme	diate freque	ency input		IN		
16	P2	Output port		Control	ed on the b	asis of input da	ita.	Nch open drain		
17	AMIN	AM input		Local in	put for AM	,		IN		
18	FMIN	FM input		Local in	Local input for FM			IN		
19	VDD	Power supply		Power s	Power supply, with 4.0V to 6.0V applied voltage.					
20	NC	Unused termin	al	Not rela	ted to circu	its.				
21	PD	Phase compari	ison output				dividing local output is	3-state		
22	Vss	GROUND			higher than standard frequency. Low level when value is lower. High impedance when value is same.					

ROHM

Ì

BU2622S

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions		
Supply current 1	I _{DD1}	—	6.0	10.0	mA	FM _{IN} =130MHz, 100mVrms		
Supply current 2	DD2		0.3	1.0	mA	No input, PLL=OFF		
Quiescent circuit current	ViH	4.0	_	-	v	CE, CK, DA, SD		
"H" level input voltage	VIL	_		1.0	v	CE, CK, DA, SD		
"L" level input voltage	l _{IE41}	_		1.0	μA	CE, CK, DA, SD	VIN=VDD	
"H" level input current 1	li∺2	—	0.3	_	μA	XIN	VIN=VDD	
"H" level input current 2	l⊪a	—	6.0	_	μA	FMIN, AMIN, IFIN	VIN=VDD	
"H" level input current 3	IIL1	-1.0	_	_	μA	CE, CK, DA, SD	V _{IN} =V _{SS}	
"L" level input current 1	 I(L2	_	-0.3	_	μA	XIN	V _{IN} =V _{SS}	
"L" level input current 2	l1L3	_	-6.0	_	μA	FMIN, AMIN, IFIN	V _{IN} =V _{SS}	
"L" level input current 3	VoL1	_	0.2	0.5	v	Po, P1, P2, P3, P4, TM, CD	10=1.0mA	
"L" level output voltage 1	OFF1	-	_	1.0	μA	Po, P1, P2, P3, P4, TM, CD	V ₀ =10V	
"OFF" level leak current 1	Vol2		_	0.3	v	FMIN, AMIN, IFIN	lout=0.1mA	
"L" level output voltage 2	Voн	V _{DD} 1.0	V _{DD}		v	PD. Ps	lout=-1.0mA	
"H" level output voltage	Vol4		0.15	1.0	v	PD, P5	lour=1.0mA	
"L" level output voltage	OFF2	—	_	100	пА	PD	V _{OUT} =V _{DD}	
"OFF" level leak current 2	loffa	-100			nA	PD	V _{OUT} =V _{SS}	
"OFF" level leak current 3		—	10		MΩ	XIN		
Internal feedback resistor 1	R _{F2}		500	_	kΩ	FMIN, AMIN, IFIN		
Internal feedback resistor 2	FINI	_	7.2	_	MHz	XIN, sine wave, C coupling		
Input frequency 1	FIN2	10	_	130	MHz	FMIN,sine wave,C coupling	V _{IN} ≕50mVrms	
Input frequency 2	Fina	0.5	—	30	MHz	AMIN,sine wave,C coupling	V _{IN} =70mVrms	
Input frequency 3	FIN4	0.5	_	15	MHz	AMIF, sine wave, C coupling	V _{IN} =50mVrms	
Input frequency 4	Fin5	0.4		16	MHz	IFIN, sine wave, C coupling	V _{IN} =70mVrms	
Maximum input amplitude	FINMAX		—	1.5	Vrms	XIN,FMIN,AMIN,IFIN,sine wa	ve,C coupling	
Minimum pulse width	TW		1.0	_	μs	CK, DA		
Input rise time	TR	-	<u> </u>	500	ns	CE, CK, DA	·	
Input fall time	TF		_	500	ns	CE, CK, DA		

© Not designed for radiation resistance.

BU2622S

rohm

183

BU2622S

Explanation of the data

(1) Division data : For D_0 through D_{15} (When S = 1, use D_4 through D_{15} .)

Do	D1	D٤	D₃	D4	Ðs	D ₆	D7	Da	D ₉	D ₁₀	D ₁₁	Dız	D13	D14	D15
Examp	Examples:														
Divided frequency = 1106 (D) ÷2=553 (D) ==229 (H) S=0															
1	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0
Divide	d frequ	ency =	1107 (C)=453	8 (H)	s=	1, PS	=1							
1	1	0	0	1	0	1	0	0	0	1	0	0	0	0	0
Divide	Divided frequency = 926 (D) = $39E$ (H) S=1, PS=0														
×	×	×	×	0	1	1	1	1	0	0	1	1	1	0	0

(2) CT: Frequency measurement beginning data

1: Begins measurement.

0 : Resets internal counter, IFIN goes to pulldown.

(3) Output port control data : Po, P1, P2, P3, P4, P5

- 1: Open drain output ON (P5 is LO)
- 2: Open drain output OFF (P5 is HI)
- (4) Z0 : Ps is set to high impedance.
- (5) Ro, R1, R2, standard frequency data

	Data		Standard frequency
Ro	R ₁	R ₂	
0	0	0	25kHz
0	0	1	12.5kHz
0	1	0	50kHz
0	1	1	10kHz
1	0	0	5kHz
1	0	1	9kHz
1	1	0	1kHz
1	1	1	* PLL OFF

* FMIN = pulldown, AMIN = pulldown, PD = high impedance

- (6) S: switch between FMIN and AMIN
 - 0 : FMIN

1 : AMIN

(7) PS: If this bit is set to ON while AMIN is selected, swallow counter division is possible.

ROHM

(8) GT : Frequency measurement time and unlock detection ON/OFF

СТ	GT	Frequency measurement	Unlock detection	Data output
0	0	OFF	OFF	NG
0	1	OFF	ON	
1	0	ON Gate time = 8 mSEC	ON	OK
1	1	ON Gate time = 16 mSEC	ON	

(9) TS: Test data (0) is input

Frequency counter

(2) How the frequency counter operates When control data CT equals 1, the 20-bit counter and the amp go into operation. When CT equals 0, amp input goes to pulldown and the counter is reset. Measuring time (gate pulse) is selected (8mSEC/16mSEC) on the basis of control data GT. When control data CT equals 0, the counter is reset.

When control data GT equals 1, or CT equals 1, the unlock detection circuit goes into operation for 8mSEC. When CT equals 1, the unlock detection circuits stops operating before the frequency counter gate pulse is emitted. When CT equals 0, or GT equals 0, the unlock detection circuit is reset.

1m\$EC**≦**T1<2m\$EC

Explanation of	of the	output	data
----------------	--------	--------	------

U0	U1	U2	UЗ					
0	0	0	0			ERR	<	1.1 <i>µ</i> SEC
1	0	0	0	1.1 μ SEC	<	ERR	<	2.2 <i>µ</i> SEC
1	1	0	0	2.2 µ SEC	<	ERR	<	$3.3 \mu\text{SEC}$
1	1	1	0	3.3 <i>µ</i> SEC	<	ERR	<	$4.4 \mu\text{SEC}$
1	1	1	1	$4.4 \ \mu \text{SEC}$	<	ERR		

185

BU2622S

PLL frequency sythesizers

High-frequency signal processors

ROHM

BU2622S

(1) When CT = 1 : Frequency count and unlock detection are carried out.

(2) When CT = 0 and GT = 1: Only unlock detection is carried out.

186

BU2622S

ROHM

187

.

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

- Notes when exporting
 - It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
 - Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.