Servo Signal Processor for CD BU9312AKS

The BU9312AKS is a CD servo signal processing IC that contains a speed doubling unadjusted PLL, program servo, and signal processor, and that delivers low voltage operation and low power consumption. This IC is ideal for miniaturized, low-power-consumption applications.

Applications

Portable CD players, portable stereos, mini component stereo systems

Features

- Internal PLL circuit, allowing EFM data demodulation and bit clock sampling with minimum attached components.
- 2) Frame synch signal detection and protection.
- Internal focus, tracking and thread servo filters. Characteristics can be controlled with commands from the controller.
- 4) Subcode serial output pin.
- 5) Output pins for P code and Q code.
- 6) Internal CLV sequencer that automatically sets the CLV mode.

- 7) Internal track jump sequencer that jumps the desired number of tracks.
- Single-chip IC with deinterleaving function and internal C1 / C2 double error detection, correction and flag processor.
- Signals to DAC are output via MSB fast 2'SCOMP serial outputs, enabling control of ON / OFF operation of CD-ROM interpolators.
- 10) 16KB of internal SRAM, for the storage of up to \pm 4 frames of jitters.
- 11) Doubled-speed playback.

NOHW

Block diagram

●Absolute maximum ratings (Ta=25℃)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	7	V
Power dissipation	Pd	400 *	mW
Operating temperature	Topr	-25~75	ĉ
Storage temperature	Tstg	-55~125	C

* Reduced by 4.0 mW for each increase in Ta of 1°C over 25°C.

Recommended operating conditions (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	
Power supply voltage	Vcc	3.0	-	5.5	V	

BU9312AKS

DSP for CD (Servo+ECC)

rohm

Pin description

Pin No.	Pin name	Analog/ digital	۱∕٥	Function	ł/O circu	
1	Vpp2			PLL and servo filter block power supply		
2	ASY	Digital	0	EFM signal slicing level control output	Fig.5	
3	EYE	Digital		Input of EFM signals from the RF amplifier	Fig.4	
4	FCO	Analog	0	PLL frequency comparison error voltage output	Fig.7	
5	PLLSW	Digital	0	PLL time constant switching	Fig.3	
6	PCO	Analog	0	PLL phase comparison error voltage output	Fig.7	
7	ADPFO	Analog	0 -	PLL adding amplifier output	Fig.2	
8	ADPFI .	Analog .	1	PLL adding amplifier inverted input	Fig.1	
9	GND2			PLL servo filter block ground		
10	MIRROR	Digital	1	Mirror signal input	Fig.4	
11	SCRACH	Digital	1	Scratch signal input	Fig.4	
12	FEIN	Analog	1	Focus error signal input	Fig.1	
13	FOK	Digital		Focus OK signal input	Fig.4	
14	FON	Digital	0	Focus ON signal output	Fig.5	
15	TEIN	Analog		Tracking error signal input	Fig.1	
16	ATS	Analog	1	Anti-shock detection window comparator input	Fig.1	
17	TZC	Analog	1	Tracking zero-cross comparator input	Fig.1	
18	RVCO	Analog	0	PLL VCO free running resistor	Fig.2	
19	TCAPA1	Analog	1/0	Tracking servo filter capacitor connection	Fig.6	
20	TCAPA2	Analog	1/0	Tracking servo filter capacitor connection	Fig.6	
21	FCAPA	Analog	1/0	Focus servo filter capacitor connection	Fig.6	
22	FDOUT	Analog	0	Focus driver output	Fig.2	
23	TDOUT	Analog	0	Tracking drive output	Fig.2	
24	SDIN	Analog	1	Thread amplifier input	Fig.1	
25	SDOUT	Analog	0	Thread driver output	Fig.2	
26	VREF	Analog	1	Bias voltage input	Fig.6	
27	GND1		1	Digital ground		
28	CLVS	Digital	0	Spindle motor drive output (speed control output)	Fig.7	
29	CLVP	Digital	0	Spindle motor drive output (rough or phase control output)	Fig.7	
30	FSW	Digital	0	Spindle motor output (filter time constant switching output)	. Fig.3	
31	RFCK	Digital	0	Read frame clock output (X'tal 7.35 kHz)	Fig.5	
32	WFCK	Digital	0	Write frame clock output (7.35 kHz when locked on X'tal)	Fig.5	
33	SUBSYQ	Digital	0	Subcode sink S0 + S1 output	Fig.5	
34	SUBDATA	Digital	0	Subcode serial output	Fig.5	

78

ROHM

BU9312AKS

<u>I</u> Cs
Disc
tical
ð

Pin No.	Pin name	Analog/ digital	١⁄٥	Function	Input/output circuit diagram
35	SUBCK	Digital	1	Subcode read clock	Fig.4
36	мск	Digital	I	Clock for CPU serial data reading or sub Q code reading	Fig.4
37	DIN	Digital	I	CPU serial data input	Fig.4
38	DOUT	Digital	0	Sub Q code or internal status serial output	Fig.7
39	RW	Digital	1	Read/write switching or track jump command input $(H = data output from DOUT, L = data input from DIN)$	Fig.4
40	BUSY	Digital	0	Busy output (L during track jumping)	Fig.5
41~59	NC				
60	CLVPA	Analog	0	CLV phase linear output	Fig.1
61	CLVSA	Analog	0	CLV speed linear output	Fig.1
62	C2F2	Digital	0	C2 double correction flag	Fig.5
63	C2F1	Digital	0	C2 single correction flag	Fig.5
64	C1F2	Digital	0	C1 double correction flag	Fig.5
65	C1F1	Digital	0	C1 single correction flag	Fig.5
66	C2CLK	Digital	0	Strobe signal (f = 176.4 kHz)	Fig.5
67	C2F	Digital	0	Correction status output	Fig.5
68	DE	Digital	0	Strobe signal (f = 88.2 kHz)	Fig.5
69	LRCK	Digital	0	Strobe signal (f = 44.1 kHz)	Fig.5
70	DOUTA	Digital	0	Audio data output (2'SCOMP)	Fig.5
71	DOCK	Digital	0	DOUTA bit clock (f = 2.1168 MHz)	Fig.5
72	CLK	Digital	0	Clock output (4 settings selected with &hE4 command)	Fig.5
73	GND1			Digital ground	
74	RESET	Digital	1.	Internal circuit reset (pulled up with 100 k Ω internal resistor)	Fig.8
75	XOUT	Digital	0	X'tal oscillator output (f = 16.9 MHz)	Fig.9
76	XIN	Digital	1	X'tal oscillator input (f = 16.9 MHz)	Fig.9
77	GFS	Digital	0	GFS monitor output (4 settings selected with &hE4 command)	Fig.5
78	VDD1			Digital power supply	
79	SENS	Digital	0	Status output for signal selected with the &hE4 command	Fig.5
80	EXPLCK	Digital	1/0	PLL output and playback clock input for attached PLL	Fig.10

ROHM

79

Input/output circuits

b

Fig. 7

Fig. 3

Fig. 2

Fig. 5

Fig. 8

Ŧ

T T

Fig. 6

Fig. 10

●Electrical characteristics (unless otherwise noted, Ta=25℃, V_{DD}=5V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Suitable pins
İnput voltagə, high level	Vн	3.5			v		*1
Input voltage, low level	V⊫		-	0.3	V		*1
Output voltage, high level	Voн	4.0	-	VDD	v	loн=-1mA	*2
Output voltage, low level	Vol	0	-	0.4	v	loL=1mA	*2、5
Input resistance 1	Vo1	80	100	120	kΩ	Between Voor pins	*3
Input resistance 2	Vo2	60	75	90	kΩ	Between BIAS pins	TZC
Input resistance 3	Vos	180	230	280	kΩ	Between BIAS pins	ATS
Input resistance 4	Vo4	20	25	30	kΩ	Between BIAS pins	*6
Input leakage current	lu			±5	μA	VI=0~5.25V	*1、2
Output leakage current	llo		-	±5	μA	Vo=0~5.25V	*4、5

Suitable pins

*1 MIRROR, SCRACH, FOK, SUBCK, MCK, DIN, RW, RESET, EXPLCK, EYE

*2 FON, CLVS, CLVP, RFCK, WFCK, SUBSYQ, SUBDATA, DOUT, BUSY, XOUT, SENS, GFS, ASY, C1F1, C1F2, C2F1, C2F2, C2CLK, C2F, DE, LRCK, DOCK, CLK

*3 RESET

*4 CLVS, CLVP

- *5 PLLSW, TCAPA2, FSW
- *6 FEIN, TEIN

80

Rohm

•External dimensions (Units: mm)

BU9312AKS

Optical Disc ICs

DSP for CD (Servo+ECC)

For CDs/CD-RÒMs

ROHM

81

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices itself, resell or otherwise dispose of the same; no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

- Notes when exporting
 - It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
 - Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.