

March 1993 Diode Array

Features

- · Six Matched Diodes on a Common Substrate
- Excellent Reverse Recovery Time 1ns Typical
- Matched Monolithic Construction
 - V_F Matched Within 5mV
- Low Diode Capacitance
 - $C_D = 0.65pF$ Typical at $V_R = -2V$

Applications

- Ultra-Fast Low Capacitance Matched Diodes for Applications in Communications and Switching Systems
- Balanced Modulators or Demodulators
- Ring Modulators
- · High Speed Diode Gates
- Analog Switches

Description

The CA3039 consists of six ultra-fast, low capacitance diodes on a common monolithic substrate. Integrated circuit construction assures excellent static and dynamic matching of the diodes, making the array extremely useful for a wide variety of applications in communication and switching systems.

Five of the diodes are independently accessible, the sixth shares a common terminal with the substrate.

For applications such as balanced modulators or ring modulators where capacitive balance is important, the substrate should be returned to a DC potential which is significantly more negative (with respect to the active diodes) than the peak signal applied.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
CA3039	-55°C to +125°C	12 Pin CAN
CA3039M	-55°C to +125°C	14 Lead SOIC
CA3039M96	-55°C to +125°C	14 Lead SOIC*

^{*} Denotes Tape and Reel

Pinouts

CA3039 (SOIC) TOP VIEW

CA3039 (TO-5 CAN) TOP VIEW

Specifications CA3039

Absolute Maximum Ratings

Operating Conditions

Inverse Voltage (PIV) for: D ₁ - D ₅ 5V
D ₆
Diode-to-Substrate Voltage (V _{DI}) for D ₁ - D ₅ +20V, -1V
(Terminal 1, 4, 5, 8 or 12 to Terminal 10)
DC Forward Current (I _F)25mA
Recurrent Forward Current (I _F)
Forward Surge Current (I _{F(SURGE)})100mA
Power Dissipation
Any One Diode Unit
Total for Device
For $T_A > +55^{\circ}C$
Junction Temperature
Junction Temperature (Plastic Package) +150°C
Lead Temperature (Soldering 10 Sec.) +300°C

 $\label{eq:continuity} \begin{array}{lll} \text{Operating Temperature Range} & & -55^{o}\text{C} \leq T_{A} \leq +125^{o}\text{C} \\ \text{Storage Temperature Range} & & -65^{o}\text{C} \leq T_{A} \leq +150^{o}\text{C} \\ \end{array}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $T_A = +25^{\circ}C$. Characteristics apply for each diode unit, Unless Otherwise Specified

	SYMBOL	TEST CONDITIONS	LIMITS			
PARAMETER			MIN	TYP	MAX	UNITS
DC Forward Voltage Drop (Figure 1)	V_{F}	I _F = 50μA	-	0.65	0.69	V
		I _F = 1mA	-	0.73	0.78	V
		I _F = 3mA	-	0.76	0.80	V
		I _F = 10mA	-	0.81	0.90	V
DC Reverse Breakdown Voltage	$V_{(BR)R}$	I _R = -10μA	5	7	-	V
DC Reverse Breakdown Voltage Between Any Diode Unit and Substrate	$V_{(BR)R}$	I _R = -10μA	20	-	-	V
DC Reverse (Leakage) Current (Figure 2)	I _R	V _R = -4V	-	0.016	100	nA
DC Reverse (Leakage) Current Between Any Diode Unit and Substrate (Figure 3)	I _R	V _R = -10V	-	0.022	100	nA
Magnitude of Diode Offset Voltage (Note 1) (Figure 1)	V _{F1} - V _{F2}	I _F = 1mA	-	0.5	5.0	mV
Temperature Coefficient of V _{F1} - V _{F2} (Figure 4)	$\frac{\Delta \left V_{\text{F1}} - V_{\text{F2}} \right }{\Delta T}$	I _F = 1mA	-	1.0	-	μV/°C
Temperature Coefficient of Forward Drop (Figure 5)	$\frac{\Delta V_{F}}{\Delta T}$	I _F = 1mA	-	-1.9	-	mV/°C
DC Forward Voltage Drop for Anode-to-Substrate Diode ($D_{\rm S}$)	V _F	I _F = 1mA	-	0.65	-	V
Reverse Recovery Time	t _{RR}	$I_F = 10 \text{mA}, I_R = -10 \text{mA}$	-	1.0	-	ns
Diode Resistance (Figure 6)	R_D	$f = 1kHz, I_F = 1mA$	25	30	45	Ω
Diode Capacitance (Figure 7)	C _D	$V_R = -2V, I_F = 0$	-	0.65	-	pF
Diode-to-Substrate Capacitance (Figure 8)	C _{DI}	$V_{DI} = 4V, I_{F} = 0$	-	3.2	-	pF

NOTE:

^{1.} Magnitude of Diode Offset Voltage is the difference in DC Forward Voltage Drops of any two diode units.

Typical Performance Curves (Continued)

FIGURE 8. DIODE-TO-SUBSTRATE CAPACITANCE VS REVERSE VOLTAGE