CD4071BC,CD4071BM,CD4081BC,CD4081BM

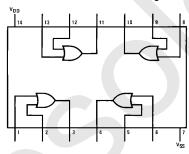
CD4071BM CD4071BC Quad 2-Input OR Buffered B Series Gate CD4081BM CD4081BC Quad 2-Input AND Buffered B Series Gate

Literature Number: SNOS368A

CD4071BM/CD4071BC Quad 2-Input OR Buffered B Series Gate CD4081BM/CD4081BC Quad 2-Input AND Buffered B Series Gate

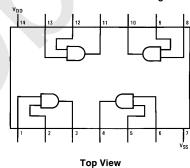
General Description

These quad gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. They have equal source and sink current capabilities and conform to standard B series output drive. The devices also have buffered outputs which improve transfer characteristics by providing very high gain.


All inputs protected against static discharge with diodes to $V_{\mbox{\scriptsize DD}}$ and $V_{\mbox{\scriptsize SS}}.$

Features

- Low power TTL Fan out of 2 driving 74L compatibility or 1 driving 74LS
- 5V-10V-15V parametric ratings
- Symmetrical output characteristics
- Maximum input leakage 1 µA at 15V over full temperature range


Connection Diagrams

CD4071B Dual-In-Line Package

TL/F/5977-3

Top View CD4081B Dual-In-Line Package

TL/F/5977-6

Order Number CD4071B or CD4081B

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Voltage at Any Pin -0.5V to $V_{\rm DD} + 0.5V$

Power Dissipation (PD)

Dual-In-Line 700 mW Small Outline 500 mW $-0.5\,V_{DC}$ to $\,\pm\,18\,V_{DC}$

V_{DD} Range

Storage Temperature (T_S) -65°C to +150°C Lead Temperature (T_L) (Soldering, 10 seconds)

260°C

Operating Conditions

Operating Range (V_{DD})

Operating Temperature Range (T_A)

CD4071BM, CD4081BM

CD4071BC, CD4081BC

3 V_{DC} to 15 V_{DC}

-55°C to +125°C -40°C to +85°C

DC Electrical Characteristics CD4071BM/CD4081BM (Note 2)

Symbol	Parameter	Conditions	−55°C		+ 25°C			+ 125°C		Units
Symbol			Min	Max	Min	Тур	Max	Min	Max	Joints
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		0.25 0.50 1.0		0.004 0.005 0.006	0.25 0.50 1.0		7.5 15 30	μΑ μΑ μΑ
V _{OL}	Low Level Output Voltage	$ \left \begin{array}{c} V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \end{array} \right\} \left I_O \right < 1 \; \mu A $		0.05 0.05 0.05		0 0 0	0.05 0.05 0.05		0.05 0.05 0.05	V V
V _{OH}	High Level Output Voltage	$ \begin{vmatrix} V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \end{vmatrix} I_{O} < 1 \ \mu A $	4.95 9.95 14.95		4.95 9.95 14.95	5 10 15		4.95 9.95 14.95		V V
V _{IL}	Low Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V$ $V_{DD} = 10V, V_{O} = 1.0V$ $V_{DD} = 15V, V_{O} = 1.5V$		1.5 3.0 4.0		2 4 6	1.5 3.0 4.0		1.5 3.0 4.0	V V
V _{IH}	High Level Input Voltage	$V_{DD} = 5V, V_{O} = 4.5V$ $V_{DD} = 10V, V_{O} = 9.0V$ $V_{DD} = 15V, V_{O} = 13.5V$	3.5 7.0 11.0		3.5 7.0 11.0	3 6 9		3.5 7.0 11.0		V V
l _{OL}	Low Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 0.4V$ $V_{DD} = 10V, V_{O} = 0.5V$ $V_{DD} = 15V, V_{O} = 1.5V$	0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.8		0.36 0.9 2.4		mA mA mA
ГОН	High Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 4.6V$ $V_{DD} = 10V, V_{O} = 9.5V$ $V_{DD} = 15V, V_{O} = 13.5V$	-0.64 -1.6 -4.2		-0.51 -1.3 -3.4	-0.88 -2.25 -8.8		-0.36 -0.9 -2.4		mA mA mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$ $V_{DD} = 15V, V_{IN} = 15V$		-0.10 0.10		-10 ⁻⁵	-0.10 0.10		-1.0 1.0	μA μA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device

Note 2: All voltages measured with respect to V_{SS} unless otherwise specified.

Note 3: I_{OH} and I_{OL} are tested one output at a time.

DC Electrical Characteristics CD4071BC/CD4081BC (Note 2)

Symbol	Parameter	Conditions	-40°C		+ 25°C			+85°C		Units
			Min	Max	Min	Тур	Max	Min	Max	Jillis
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		1 2 4		0.004 0.005 0.006	1 2 4		7.5 15 30	μΑ μΑ μΑ
V _{OL}	Low Level Output Voltage	$ \begin{vmatrix} V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \end{vmatrix} I_{O} < 1 \ \mu A $		0.05 0.05 0.05		0 0 0	0.05 0.05 0.05		0.05 0.05 0.05	V V V
V _{OH}	High Level Output Voltage	$ \begin{vmatrix} V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \end{vmatrix} I_O < 1 \ \mu A $	4.95 9.95 14.95		4.95 9.95 14.95	5 10 15		4.95 9.95 14.95		V V
V _{IL}	Low Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V$ $V_{DD} = 10V, V_{O} = 1.0V$ $V_{DD} = 15V, V_{O} = 1.5V$		1.5 3.0 4.0		2 4 6	1.5 3.0 4.0		1.5 3.0 4.0	V V
V _{IH}	High Level Input Voltage	$V_{DD} = 5V, V_{O} = 4.5V$ $V_{DD} = 10V, V_{O} = 9.0V$ $V_{DD} = 15V, V_{O} = 13.5V$	3.5 7.0 11.0		3.5 7.0 11.0	3 6 9		3.5 7.0 11.0		V V
l _{OL}	Low Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 0.4V$ $V_{DD} = 10V, V_{O} = 0.5V$ $V_{DD} = 15V, V_{O} = 1.5V$	0.52 1.3 3.6		0.44 1.1 3.0	0.88 2.25 8.8		0.36 0.9 2.4		mA mA mA
I _{OH}	High Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 4.6V$ $V_{DD} = 10V, V_{O} = 9.5V$ $V_{DD} = 15V, V_{O} = 13.5V$	-0.52 -1.3 -3.6		-0.44 -1.1 -3.0	-0.88 -2.25 -8.8		-0.36 -0.9 -2.4		mA mA mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$ $V_{DD} = 15V, V_{IN} = 15V$		-0.30 0.30		-10 ⁻⁵	-0.30 0.30		-1.0 1.0	μA μA

AC Electrical Characteristics* <code>CD4071BC/CD4071BM</code> $T_A=25^{\circ}$ C, Input t_f; t_f = 20 ns, $C_L=50$ pF, $R_L=200$ k Ω , Typical temperature coefficient is 0.3%/°C

Symbol	Parameter	Conditions	Тур	Max	Units
t _{PHL}	Propagation Delay Time,	$V_{DD} = 5V$	100	250	ns
	High-to-Low Level	$V_{DD} = 10V$	40	100	ns
		$V_{DD} = 15V$	30	70	ns
t _{PLH}	Propagation Delay Time,	$V_{DD} = 5V$	90	250	ns
	Low-to-High Level	$V_{DD} = 10V$	40	100	ns
		$V_{DD} = 15V$	30	70	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$	90	200	ns
		$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	40	80	ns
C _{IN}	Average Input Capacitance	Any Input	5	7.5	pF
C _{PD}	Power Dissipation Capacity	Any Gate	18		pF

^{*}AC Parameters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device

Note 2: All voltages measured with respect to $V_{\mbox{\scriptsize SS}}$ unless otherwise specified.

Note 3: I_{OH} and I_{OL} are tested one output at a time.

AC Electrical Characteristics* CD4081BC/CD4081BM $T_A = 25^{\circ}\text{C}, \text{ Input } t_{\text{r}}; \ t_f = 20 \ \text{ns}, \ C_L = 50 \ \text{pF}, \ R_L = 200 \ \text{k}\Omega, \ \text{Typical temperature coefficient is } 0.3\% / ^{\circ}\text{C}$

Symbol	Parameter	Conditions	Тур	Max	Units
t _{PHL}	Propagation Delay Time,	$V_{DD} = 5V$	100	250	ns
	High-to-Low Level	$V_{DD} = 10V$	40	100	ns
		$V_{DD} = 15V$	30	70	ns
t _{PLH}	Propagation Delay Time,	$V_{DD} = 5V$	120	250	ns
	Low-to-High Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$	90	200	ns
		$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	40	80	ns
C _{IN}	Average Input Capacitance	Any Input	5	7.5	pF
C_{PD}	Power Dissipation Capacity	Any Gate	18		pF

^{*}AC Parameters are guaranteed by DC correlated testing.

Typical Performance Characteristics

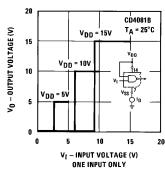


FIGURE 1. Typical Transfer Characteristics

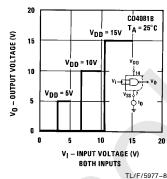


FIGURE 2. Typical Transfer Characteristics

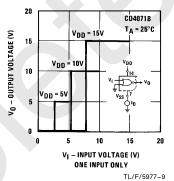


FIGURE 3. Typical Transfer Characteristics

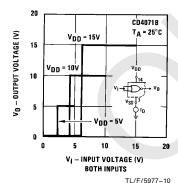
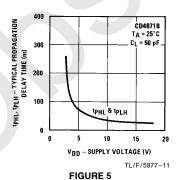
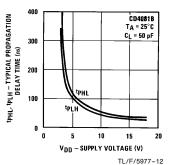
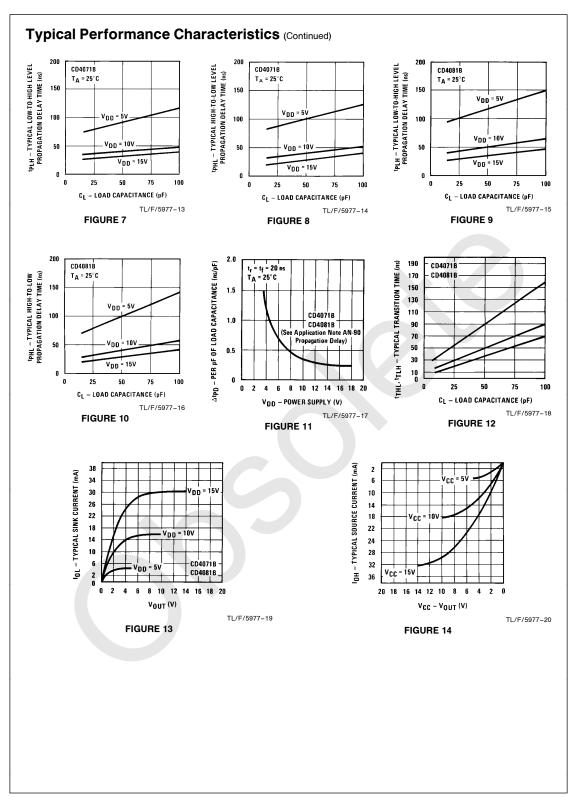
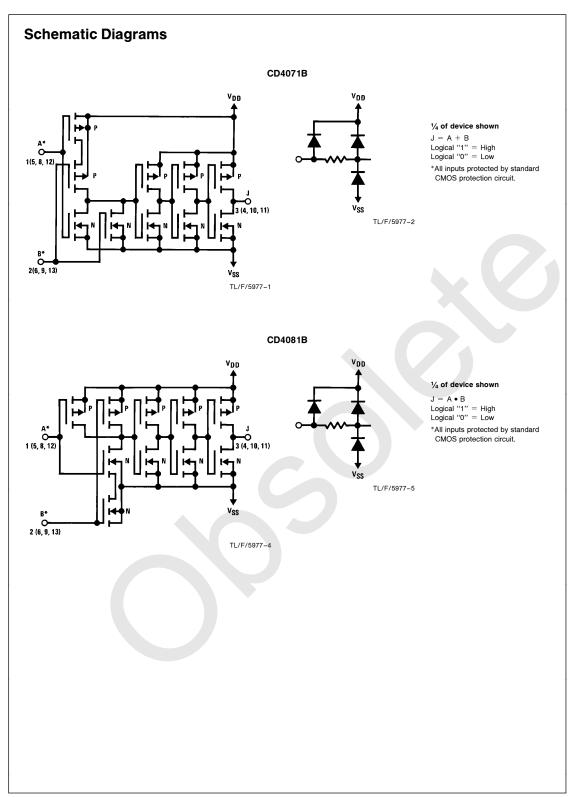
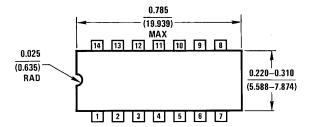
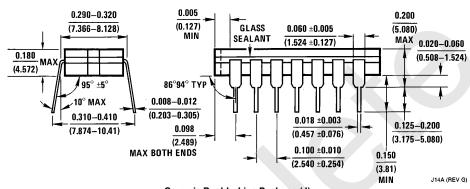
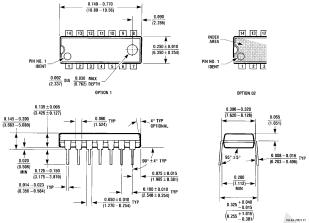



FIGURE 4. Typical Transfer Characteristics


FIGURE 6



Ceramic Dual-In-Line Package (J)
Order Number CD4071BMJ, CD4071BCJ
CD4081BMJ or CD4081BCJ
NS Package Number J14A

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N) Order Number CD4071BMN, CD4071BCN CD4081BMN or CD4081BCN NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 35 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Mobile Processors <u>www.ti.com/omap</u>

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated