Data sheet acquired from Harris Semiconductor SCHS280C November 1997 - Revised July 2003 # High-Speed CMOS Logic 4- to 16-Line Decoder/Demultiplexer with Input Latches ## Features - · Multifunction Capability - Binary to 1-of-16 Decoder - 1-to-16 Line Demultiplexer - Fanout (Over Temperature Range) - Wide Operating Temperature Range ...-55°C to 125°C - Balanced Propagation Delay and Transition Times - Significant Power Reduction Compared to LSTTL Logic ICs - HC Types - 2V to 6V Operation - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V ### **Pinout** CD54HC4514 (CERDIP) CD74HC4514, CD74HC4515 (PDIP, SOIC) TOP VIEW # Description The CD54HC4514, CD74HC4514, and CD74HC4515 are high-speed silicon gate devices consisting of a 4-bit strobed latch and a 4- to 16-line decoder. The selected output is enabled by a low on the enable input (\overline{E}). A high on \overline{E} inhibits selection of any output. Demultiplexing is accomplished by using the \overline{E} input as the data input and the select inputs (A0-A3) as addresses. This \overline{E} input also serves as a chip select when these devices are cascaded. When Latch Enable ($\overline{\text{LE}}$) is high the output follows changes in the inputs (see truth table). When $\overline{\text{LE}}$ is low the output is isolated from changes in the input and remains at the level (high for the 4514, low for the 4515) it had before the latches were enabled. These devices, enhanced versions of the equivalent CMOS types, can drive 10 LSTTL loads. # **Ordering Information** | PART NUMBER | TEMP. RANGE (°C) | PACKAGE | |---------------|------------------|--------------| | CD54HC4514F3A | -55 to 125 | 24 Ld CERDIP | | CD74HC4514E | -55 to 125 | 24 Ld PDIP | | CD74HC4514EN | -55 to 125 | 24 Ld PDIP | | CD74HC4514M | -55 to 125 | 24 Ld SOIC | | CD74HC4514M96 | -55 to 125 | 24 Ld SOIC | | CD74HC4515E | -55 to 125 | 24 Ld PDIP | | CD74HC4515EN | -55 to 125 | 24 Ld PDIP | | CD74HC4515M | -55 to 125 | 24 Ld SOIC | | CD74HC4515M96 | -55 to 125 | 24 Ld SOIC | NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. # Functional Diagram DECODE TRUTH TABLE ($\overline{LE} = 1$) | | | DECODE | R INPUTS | | ADDRESSED OUTPUT | |--------|----|--------|----------|----|--| | ENABLE | А3 | A2 | A1 | Α0 | 4514 = LOGIC 1 (HIGH)
4515 = LOGIC 0 (HIGH) | | 0 | 0 | 0 | 0 | 0 | Yo | | 0 | 0 | 0 | 0 | 1 | Y1 | | 0 | 0 | 0 | 1 | 0 | Y2 | | 0 | 0 | 0 | 1 | 1 | Y3 | | 0 | 0 | 1 | 0 | 0 | Y4 | | 0 | 0 | 1 | 0 | 1 | Y5 | | 0 | 0 | 1 | 1 | 0 | Y6 | | 0 | 0 | 1 | 1 | 1 | Y7 | | 0 | 1 | 0 | 0 | 0 | Y8 | | 0 | 1 | 0 | 0 | 1 | Y9 | | 0 | 1 | 0 | 1 | 0 | Y10 | | 0 | 1 | 0 | 1 | 1 | Y11 | | 0 | 1 | 1 | 0 | 0 | Y12 | | 0 | 1 | 1 | 0 | 1 | Y13 | | 0 | 1 | 1 | 1 | 0 | Y14 | | 0 | 1 | 1 | 1 | 1 | Y15 | | 1 | Х | Х | Х | Х | All Outputs = 0, 4514
All Outputs = 1, 4515 | X = Don't Care; Logic 1 = High; Logic 0 = Low # 2V 1000ns (Max) 4.5V 500ns (Max) 6V 400ns (Max) ### **Thermal Information** | Thermal Resistance (Typical) | θ_{JA} (oC/W) | |--|----------------------| | E (PDIP) Package (Note 1) | . 67 | | EN (PDIP) Package (Note 1) | | | M (SOIC) Package (Note 2) | . 46 | | Maximum Junction Temperature | | | Maximum Storage Temperature Range | 65°C to 150°C | | Maximum Lead Temperature (Soldering 10s) (SOIC - Lead Tips Only) | 300°C | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTES Input Rise and Fall Time - 1. The package thermal impedance is calculated in accordance with JESD 51-3. - 2. The package thermal impedance is calculated in accordance with JESD 51-7. # **DC Electrical Specifications** | | | TES
CONDI | | v _{cc} | | 25°C | | -40°C T | O 85°C | -55°C T | O 125 ⁰ C | | |---|-----------------|------------------------------------|---------------------|-----------------|------|------|------|---------|--------|---------|----------------------|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HC TYPES | • | | | | | | | | | | | | | High Level Input | V _{IH} | - | - | 2 | 1.5 | - | - | 1.5 | - | 1.5 | - | V | | Voltage | | | | 4.5 | 3.15 | - | - | 3.15 | - | 3.15 | - | V | | | | | | 6 | 4.2 | - | - | 4.2 | - | 4.2 | - | V | | Low Level Input
Voltage | V _{IL} | - | - | 2 | - | - | 0.5 | - | 0.5 | - | 0.5 | V | | Voltage | | | | 4.5 | - | - | 1.35 | - | 1.35 | - | 1.35 | V | | | | | | 6 | - | - | 1.8 | - | 1.8 | - | 1.8 | V | | High Level Output | V _{OH} | V _{IH} or V _{IL} | -0.02 | 2 | 1.9 | - | - | 1.9 | - | 1.9 | - | V | | Voltage
CMOS Loads | | | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | | | | -0.02 | 6 | 5.9 | - | - | 5.9 | - | 5.9 | - | V | | High Level Output
Voltage
TTL Loads | 7 | | - | - | - | - | - | - | - | - | - | V | | | | | -4 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | | | | -5.2 | 6 | 5.48 | - | - | 5.34 | - | 5.2 | - | V | # DC Electrical Specifications (Continued) | | | TES
CONDI | | v _{cc} | | 25°C | | -40°C T | O 85°C | -55°C T | O 125°C | | |-----------------------------|-----------------|------------------------------------|---------------------|-----------------|-----|------|------|---------|--------|---------|---------|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | Low Level Output | V _{OL} | V _{IH} or V _{IL} | 0.02 | 2 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Voltage
CMOS Loads | | | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | | 0.02 | 6 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | Low Level Output | | | - | - | - | - | - | - | - | - | - | V | | Voltage
TTL Loads | | | 4 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | | | | 5.2 | 6 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | Input Leakage
Current | II | V _{CC} or
GND | - | 6 | - | - | ±0.1 | - | ±1 | - | ±1 | μА | | Quiescent Device
Current | Icc | V _{CC} or
GND | 0 | 6 | - | - | 8 | - | 80 | - | 160 | μА | # **Prerequisite For Switching Specifications** | | | TEST | vcc | | 25 ⁰ C | | -40°C TO 85°C | | -55°C TO 125°C | | | |--------------------------|-----------------|------------|-----|-----|-------------------|-----|---------------|-----|----------------|-----|-------| | PARAMETER | SYMBOL | CONDITIONS | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HC TYPES | • | | | | | | | | | | | | LE Pulse Width | t _W | - | 2 | 75 | - | - | 95 | - | 110 | - | ns | | | | | 4.5 | 30 | - | - | 19 | - | 22 | - | ns | | | | | 6 | 35 | - | - | 16 | - | 19 | - | ns | | Select to LE Set-Up Time | t _{SU} | - | 2 | 100 | - | - | 125 | - | 150 | - | ns | | | | | 4.5 | 20 | - | - | 25 | - | 30 | - | ns | | | | | 6 | 17 | - | - | 21 | - | 26 | - | ns | | Select to LE Hold Time | t _H | - | 2 | 0 | - | - | 0 | - | 0 | - | ns | | | | | 4.5 | 0 | - | - | 0 | - | 0 | - | ns | | | | | 6 | 0 | - | - | 0 | - | 0 | - | ns | # **Switching Specifications** $C_L = 50pF$, Input t_r , $t_f = 6ns$ | | TEST | | | 25°C | | | -40°C TO
85°C | | -55°C TO
125°C | | | |-------------------|-------------------------------------|-----------------------|---------------------|------|-----|-----|------------------|-----|-------------------|-----|-------| | PARAMETER | SYMBOL | CONDITIONS | V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HC TYPES | | | | | | | | | - | | | | Propagation Delay | t _{PHL} , t _{PLH} | $C_L = 50pF$ | | | | | | | | | | | Select to Outputs | | | 2 | - | - | 275 | - | 345 | - | 415 | ns | | | | | 4.5 | - | - | 55 | - | 69 | - | 83 | ns | | | | C _L = 15pF | 5 | - | 23 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 47 | - | 59 | - | 71 | ns | | LE to Outputs | t _{PHL} , t _{PLH} | C _L = 50pF | 2 | - | - | 225 | - | 280 | - | 340 | ns | | | | | 4.5 | - | - | 45 | - | 56 | - | 68 | ns | | | | C _L = 15pF | 5 | ı | 19 | - | i | i | - | - | ns | | | | C _L = 50pF | 6 | - | - | 38 | - | 48 | - | 58 | ns | # Switching Specifications $C_L = 50pF$, Input t_r , $t_f = 6ns$ (Continued) | | | TEST | | | 25°C | | | С ТО
°С | | C TO
5°C | | |--|-------------------------------------|-----------------------|---------------------|-----|------|-----|-----|------------|-----|-------------|-------| | PARAMETER | SYMBOL | CONDITIONS | V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | E to Outputs | t _{PHL} , t _{PLH} | C _L = 50pF | 2 | - | - | 175 | - | 220 | - | 265 | ns | | | | | 4.5 | - | - | 35 | - | 44 | - | 53 | ns | | | | C _L = 15pF | 5 | - | 14 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 30 | - | 37 | - | 45 | ns | | Output Transition Time | t _{THL} , t _{TLH} | C _L = 50pF | 2 | - | - | 75 | - | 95 | - | 110 | ns | | | | | 4.5 | - | - | 15 | - | 19 | - | 22 | ns | | | | | 6 | - | - | 13 | - | 16 | - | 19 | ns | | Input Capacitance | C _{IN} | C _L = 50pF | - | 10 | - | 10 | - | 10 | - | 10 | pF | | Power Dissipation Capacitance (Notes 3, 4) | C _{PD} | - | 5 | - | 70 | - | - | - | - | - | pF | #### NOTES: - 3. $C_{\mbox{\scriptsize PD}}$ is used to determine the dynamic power consumption, per package. - $4. \ \ P_D = V_{CC}{}^2 \ f_i \ (C_{PD} + C_L) \ where \ f_i = Input \ Frequency, \ C_L = Output \ Load \ Capacitance, \ V_{CC} = Supply \ Voltage.$ # Test Circuits and Waveforms NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%. FIGURE 1. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH FIGURE 2. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC FIGURE 3. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC # Test Circuits and Waveforms (Continued) FIGURE 4. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS FIGURE 5. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS 5-Sep-2011 # **PACKAGING INFORMATION** | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | 5962-9865501QJA | ACTIVE | CDIP | J | 24 | 1 | TBD | Call TI | Call TI | | | CD54HC4514F3A | ACTIVE | CDIP | J | 24 | 1 | TBD | Call TI | N / A for Pkg Type | | | CD74HC4514E | ACTIVE | PDIP | N | 24 | 15 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | CD74HC4514EE4 | ACTIVE | PDIP | N | 24 | 15 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | CD74HC4514EN | ACTIVE | PDIP | NT | 24 | 15 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | CD74HC4514ENE4 | ACTIVE | PDIP | NT | 24 | 15 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | CD74HC4514M | ACTIVE | SOIC | DW | 24 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC4514M96 | ACTIVE | SOIC | DW | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC4514M96E4 | ACTIVE | SOIC | DW | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC4514M96G4 | ACTIVE | SOIC | DW | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC4514ME4 | ACTIVE | SOIC | DW | 24 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC4514MG4 | ACTIVE | SOIC | DW | 24 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC4515E | ACTIVE | PDIP | N | 24 | 15 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | CD74HC4515EE4 | ACTIVE | PDIP | N | 24 | 15 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | CD74HC4515EN | ACTIVE | PDIP | NT | 24 | 15 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | CD74HC4515ENE4 | ACTIVE | PDIP | NT | 24 | 15 | Pb-Free (RoHS) | CU NIPDAU | N / A for Pkg Type | | | CD74HC4515M | ACTIVE | SOIC | DW | 24 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC4515M96 | ACTIVE | SOIC | DW | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC4515M96E4 | ACTIVE | SOIC | DW | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC4515M96G4 | ACTIVE | SOIC | DW | 24 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74HC4515ME4 | ACTIVE | SOIC | DW | 24 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | # PACKAGE OPTION ADDENDUM 5-Sep-2011 | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan ⁽²⁾ | Lead/
Ball Finish | MSL Peak Temp ⁽³⁾ | Samples
(Requires Login) | |------------------|------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|-----------------------------| | CD74HC4515MG4 | ACTIVE | SOIC | DW | 24 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF CD54HC4514, CD74HC4514: Catalog: CD74HC4514 Military: CD54HC4514 NOTE: Qualified Version Definitions: Catalog - TI's standard catalog product 5-Sep-2011 • Military - QML certified for Military and Defense Applications # PACKAGE MATERIALS INFORMATION 14-Jul-2012 www.ti.com # TAPE AND REEL INFORMATION ## **REEL DIMENSIONS** ## **TAPE DIMENSIONS** | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ## TAPE AND REEL INFORMATION # *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | CD74HC4514M96 | SOIC | DW | 24 | 2000 | 330.0 | 24.4 | 10.75 | 15.7 | 2.7 | 12.0 | 24.0 | Q1 | | CD74HC4515M96 | SOIC | DW | 24 | 2000 | 330.0 | 24.4 | 10.75 | 15.7 | 2.7 | 12.0 | 24.0 | Q1 | **PACKAGE MATERIALS INFORMATION** www.ti.com 14-Jul-2012 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------|--------------|-----------------|------|------|-------------|------------|-------------| | CD74HC4514M96 | SOIC | DW | 24 | 2000 | 367.0 | 367.0 | 45.0 | | CD74HC4515M96 | SOIC | DW | 24 | 2000 | 367.0 | 367.0 | 45.0 | 4040084/C 10/97 ## J (R-GDIP-T**) ## 24 PINS SHOWN # **CERAMIC DUAL-IN-LINE PACKAGE** NOTES: A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Window (lens) added to this group of packages (24-, 28-, 32-, 40-pin). - D. This package can be hermetically sealed with a ceramic lid using glass frit. - E. Index point is provided on cap for terminal identification. # NT (R-PDIP-T**) # PLASTIC DUAL-IN-LINE PACKAGE 24 PINS SHOWN NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. B. This drawing is subject to change without notice. The 28 pin end lead shoulder width is a vendor option, either half or full width. # N (R-PDIP-T24) ## PLASTIC DUAL-IN-LINE NOTES: A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Falls within JEDEC MS-010 # N (R-PDIP-T**) ### PLASTIC DUAL-IN-LINE PACKAGE ### 24 PIN SHOWN NOTES: A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Falls within JEDEC MS-011 - D. Falls within JEDEC MS-015 (32 pin only) DW (R-PDSO-G24) # PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AD. #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. | roducts | | Applications | |---------|--------------|--------------| | | ti aaaa/adia | A | Pr Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u> www.ti-rfid.com