Data sheet acquired from Harris Semiconductor SCHS288 # 8-Input Universal Shift/Storage Register with Common Parallel I/O Pins CD54/74AC/ACT299 - Asynchronous Reset CD54/74AC/ACT323 - Synchronous Reset #### Type Features: - Buffered inputs - Typical propagation delay: 6 ns @ V_{CC} = 5 V, T_A = 25° C, C_L = 50 pF The RCA CD54/74AC299 and CD54/74AC323 and the CD54/74ACT299 and CD54/74ACT323 are 3-state, 8-input universal shift/storage registers with common parallel I/O pins. These devices use the RCA ADVANCED CMOS technology. These registers have four synchronous-operating modes controlled by the two select inputs as shown in the Mode Select (S0, S1) table. The Mode Select, the Serial Data (DSO, DS7), and the Parallel Data (I/O₀ - I/O₇) respond only to the LOW-TO-HIGH transition of the clock (CP) pulse. S0, S1 and Data inputs must be present one setup time prior to the positive transition of the clock. With the CD54/74AC/ACT299, the Master Reset (MR) is an asynchronous active-LOW input. When MR is LOW, the register is cleared regardless of the status of all other inputs. With the CD54/74AC/ACT323, the Master Reset (MR) clears the register in sync with the clock input. The register can be expanded by cascading same units by tying the serial output (QO) to the serial data (DS7) input of the preceding register, and tying the serial output (Q7) to the serial data (DSO) input of the following register. Recirculating the (n x 8) bits is accomplished by tying the Q7 of the last stage to the DSO of the first stage. The 3-state input/output (I/O) port has three modes of operation: - Both Output Enable (OE1 and OE2) inputs are LOW and S0 or S1 or both are LOW; the data in the register is present at the eight outputs. - When both S0 and S1 are HIGH, I/O terminals are in the high-impedance state but being input ports, ready for parallel data to be loaded into eight registers with one clock transition regardless of the status of OE1 and OE2. #### **Family Features:** - Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015 - SCR-Latchup-resistant CMOS process and circuit design - Speed of bipolar FAST*/AS/S with significantly reduced power consumption - Balanced propagation delays - AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply - ± 24-mA output drive current - Fanout to 15 FAST* ICs - Drives 50-ohm transmission lines *FAST is a Registered Trademark of Fairchild Semiconductor Corp. Either one of the two Output Enable inputs being HIGH will force I/O terminals to be in the off state. It is noted that each I/O terminal is a 3-state output and a CMOS buffer input. The CD74AC/ACT299 and CD74AC/ACT323 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 to +125°C). The CD54AC/ACT299 and CD54AC/ACT323, available in chip form (H suffix), are operable over the -55 to +125°C temperature range. # MODE SELECT — FUNCTION TABLE REGISTER OPERATING MODES | | | | | INPUT | S | | | REGISTER OUTPUTS | | | | | |-------------------|----|----|----|-------|-----|-----|------------------|------------------|------------------|--|----------------|----------------| | FUNCTION | MŘ | СР | S0 | S1 | DS0 | DS7 | I/O _n | Q0 | Q1 | | Q6 | Q 7 | | Reset (Clear) | L | X. | Х | Х | X | Х | Х | L | L | | L | L | | Shift Right | Н | | h: | ı | Ī | Х | Х | L | qo | | Q ₅ | Q ₆ | | | н | | h | 1 | h | × | × | Н | \mathbf{q}_{o} | | q_5 | Q_6 | | Shift Left | Н | | 1 | h · | X | 1 | Х | q ₁ | q ₂ | | Q7 | L | | • | H- | | 1 | h | Х | h | Х | q ₁ | q_2 | | q ₇ | Н | | Hold (do nothing) | Н | | ı | 1 | Х | Х | Х | q _o | Q1 | | Q ₆ | Q ₇ | | Parallel Load | Н | | h | h | Х | Х | ı | L | L | | L | L | | | Н | | h | h | X | x | h | Н | Н | | Н | Н | ^{*}On CD54/74AC/ACT323, CP must be in transition from the LOW-to-HIGH state to Reset (Clear). # MODE SELECT — FUNCTION TABLE 3-STATE I/O PORT OPERATING MODE | FUNCTION | | | | INPUTS | | INPUTS/OUTPUTS | |---------------|-----|-----|----|------------|-----------------------|---------------------------| | FUNCTION | OE1 | OE2 | S0 | S 1 | Qn (Register) | 1/00 1/07 | | Read Register | L | L | L | Х | L | L . | | | L | L | L | X | Н | Н | | | L | L | х | L | L | L | | | L | L | x | L | Н | н | | Load Register | X | Х | Н | Н | Qn = 1/O _n | I/O _n = Inputs | | Disable I/O | Н | Х | Х | Х | X | (Z) | | | X | н | x | X | X | (Z) | H = Input voltage high level. h = Input voltage high one set-up time prior clock transition. L = Input voltage low level. I = Input voltage low one set-up time prior clock transition. q_n = Lower case letters indicate the state of the referenced output one set-up time prior clock transition. X = Voltage level on logic status don't care. Z = Output in high-impedance state. = Low-to-high clock transition. 3-STATE CONTROL 13 -O 1/01 14 -O 1/03 3-STATE OUTPUTS BUS LINE BUS LINE 15 -○ 1/05 16 -0 1/07 17 O Q7 STANDARD OUTPUT STANDARD OUTPUT QO so O MODE SELECTION 92CM-36996RI 050 O 18 GND 10 Fig. 1 - Functional diagram | MAXIMUM RATINGS, Absolute-Maximum Values: | |--| | DC SUPPLY-VOLTAGE (V _{CC}) -0.5 to 6 V | | DC INPUT DIODE CURRENT, I_{iK} (for $V_1 < -0.5$ V or $V_1 > V_{CC} + 0.5$ V) | | DC OUTPUT DIODE CURRENT, I_{OK} (for $V_O < -0.5$ V or $V_O > V_{CC} + 0.5$ V) | | DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, I_0 (for $V_0 > -0.5$ V or $V_0 < V_{CC} + 0.5$ V) | | DC V_{∞} or GROUND CURRENT (I_{∞} or I_{GND}) | | POWER DISSIPATION PER PACKAGE (P₀): | | For $T_A = -55$ to $+100^{\circ}$ C (PACKAGE TYPE E) | | For $T_A = +100$ to $+125$ °C (PACKAGE TYPE E) | | For $T_A = -55$ to $+70$ °C (PACKAGE TYPE M) | | For T _A = +70 to +125°C (PACKAGE TYPE M) | | OPERATING-TEMPERATURE RANGE (T _A) | | STORAGE TEMPERATURE (T _{stg})65 to +150° C | | LEAD TEMPERATURE (DURING SOLDERING): | | At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s maximum+265°C | | Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contacting lead tips only +300°C | | *For up to 4 outputs per device; add \pm 25 mA for each additional output. | ### **RECOMMENDED OPERATING CONDITIONS:** For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges: | CHARACTERIOTICS | LIN | IITS | LIAUTO | | |---|------------|----------------|----------------------|--| | CHARACTERISTICS | MIN. | MAX. | UNITS | | | Supply-Voltage Range, V _{CC} *: (For T _A = Full Package-Temperature Range) | | | | | | AC Types ACT Types | 1.5
4.5 | 5.5
5.5 | V | | | DC Input or Output Voltage, V _i , V ₀ | 0 | Vcc | V | | | Operating Temperature, T _A | -55 | +125 | °C | | | Input Rise and Fall Slew Rate, dt/dv
at 1.5 V to 3 V (AC Types)
at 3.6 V to 5.5 V (AC Types)
at 4.5 V to 5.5 V (ACT Types) | 0 0 | 50
20
10 | ns/V
ns/V
ns/V | | ^{*}Unless otherwise specified, all voltages are referenced to ground. Technical Data _ # CD54/74AC299, CD54/74AC323 CD54/74ACT299, CD54/74ACT323 STATIC ELECTRICAL CHARACTERISTICS: AC Series | | | | | | | AMBIEN' | T TEMPE | RATURE | (T _A) - ° | С | | |----------------------------------|-----------------|------------------------------|------------------------|-----------------|--------------------|--------------------|--------------------|--------------------|-----------------------|--------------------|----------| | CHARACTERIST | ics | TEST COI | NDITIONS | V _{cc} | + | 25 | -40 t | o +85. | -55 to | +125 | V V V μA | | | | V, (V) | l _o
(mA) | (V) | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. |] | | High-Level Input
Voltage | ViH | | | 1.5
3
5.5 | 1.2
2.1
3.85 | | 1.2
2.1
3.85 | = | 1.2
2.1
3.85 | | V | | Low-Level Input
Voltage | Vil | | | 1.5
3
5.5 | _ | 0.3
0.9
1.65 | _ | 0.3
0.9
1.65 | _ | 0.3
0.9
1.65 | V | | High-Level Output | | | -0.05 | 1.5 | 1.4 | | 1.4 | _ | 1.4 | | | | Voltage | V _{OH} | VIH | -0.05 | 3 | 2.9 | l — | 2.9 | _ | 2.9 | _ |] | | | | or | -0.05 | 4.5 | 4.4 | | 4.4 | _ | 4.4 | _ |] | | | | V _{IL} | -4 | 3 | 2.58 | _ | 2.48 | _ | 2.4 | _ | \ \ | | | | | -24 | 4.5 | 3.94 | | 3.8 | | 3.7 | | | | | | #, * { | -75 | 5.5 | | _ | 3.85 | _ | | _ | | | | | " ' | -50 | 5.5 | | _ | | | 3.85 | | | | Low-Level Output | | | 0.05 | 1.5 | _ | 0.1 | | 0.1 | _ | 0.1 | | | Voltage | Vol | ViH | 0.05 | 3 | _ | 0.1 | | 0.1 | | 0.1 | | | | | or | 0.05 | 4.5 | _ | 0.1 | | 0.1 | | 0.1 |] | | | | ViL | 12 | 3 | | 0.36 | _ | 0.44 | | 0.5 | V | | | | | 24 | 4.5 | _ | 0.36 | | 0.44 | | 0.5 | | | | | #, * { | 75 | 5.5 | | _ | | 1.65 | | | | | | | <u>"' l</u> | 50 | 5.5 | | | _ | | | 1.65 | | | Input Leakage
Current | t _i | V _{cc}
or
GND | | 5.5 | _ | ±0.1 | | · ±1 | _ | ±1 | μА | | 3-Stage
Leakage
Current | loz | VIH Or VIL Vo= Vcc Or GND | | 5.5 | | ±0.5 | _ | ±5 | | ±10 | μΑ | | Quiescent Supply
Current, MSI | tcc | V _{cc}
or
GND | 0 | 5.5 | _ | 8 | · <u>-</u> | 80 | - | 160 | μΑ | [#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. *Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C. ### STATIC ELECTRICAL CHARACTERISTICS: ACT Series | | 70.00 | | | | | AMBIEN | T TEMPE | RATURE | E (T _A) - ° | С | | |---|-----------------|---|------------------------|------------------|------|----------|---------|--------|-------------------------|------|-------| | CHARACTERISTIC | CS | TEST CO | NDITIONS | V _{cc} | + | 25 | -40 t | o +85 | -55 to | +125 | UNITS | | | | V,
(V) | l _o
(mA) | (V) | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | High-Level Input
Voltage | Vін | | | 4.5
to
5.5 | 2 | _ | 2 | _ | 2 | _ | V | | Low-Level Input
Voltage | VIL | | | 4.5
to
5.5 | | 0.8 | _ | 0.8 | _ | 0.8 | V | | High-Level Output | | V _{IH} | -0.05 | 4.5 | 4.4 | <u> </u> | 4.4 | _ | 4.4 | _ | | | Voltage | V _{OH} | or
V _{IL} | -24 | 4.5 | 3.94 | | 3.8 | | 3.7 | l – |] | | | | #, * { | -75 | 5.5 | _ | _ | 3.85 | _ | _ | _ |] v | | | | "' (| -50 | 5.5 | _ | | _ | | 3.85 | | | | Low-Level Output | | V _{IH} | 0.05 | 4.5 | | 0.1 | – | 0.1 | - | 0.1 | | | Voltage | Vol | or
V _{IL} | 24 | 4.5 | | 0.36 | _ | 0.44 | _ | 0.5 | v | | | | #, * { | 75 | 5.5 | _ | | _ | 1.65 | _ | _ | 1 | | | | ", " [| 50 | 5.5 | | _ | | | _ | 1.65 | 1 | | Input Leakage
Current | I ₁ | V _{cc}
or
GND | | 5.5 | | ±0.1 | _ | ±1 | | ±1 | μΑ | | 3-State
Leakage
Current | loz | V _{IH}
or
V _{IL}
V _O
or
GND | | 5.5 | | ±0.5 | | ±5 | _ | ±10 | μΑ | | Quiescent Supply
Current, MSI | lcc | V _{cc}
or
GND | 0 | 5 .5 | _ | 8 | _ | 80 | _ | 160 | μΑ | | Additional Quiescent S
Current per Input Pir
TTL Inputs High
1 Unit Load | | V _{cc} -2.1 | | 4.5
to
5.5 | | 2.4 | | 2.8 | _ | 3 | mA | [#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. ## **ACT INPUT LOADING TABLE** | | UNIT LOADS* | | | | | |--|-------------|------|--|--|--| | INPUT | 299 | 323 | | | | | S1, S0, OE1, OE2 | 0.83 | 0.83 | | | | | 1/O ₀ - 1/O ₇ , CP, DS0, DS7 | 0.67 | 0.67 | | | | | MR | 1.33 | 0.67 | | | | ^{*}Unit load is ΔI_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25°C. power dissipation. *Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C. THE STATE OF # CD54/74AC299, CD54/74AC323 CD54/74ACT299, CD54/74ACT323 PREREQUISITE FOR SWITCHING: AC Series | | | | AMBI | ENT TEMPE | RATURE (1 | 'A) - °C | 1. | | |---|------------------|-------------------|-------------------|---------------|------------------|-------------|-------|--| | CHARACTERISTICS | SYMBOL | V _{cc} | -40 t | o +85 | -55 to | +125 | UNITS | | | | | (V) | MIN. | MAX. | MIN. | MAX. | 1 | | | Setup Time
S1, S0, to CP | tsu | 1.5
3.3*
5† | 99
11.1
7.9 | | 113
12.6
9 | | ns | | | Hold Time
S1, S0 to CP | tн | 1.5
3.3
5 | 0 0 | = | 0 0 | | ns | | | Setup Time
(I/O)n, DS0,
DS7 to CP | t _{su} | 1.5
3.3
5 | 49
5.5
3.9 | - | 56
6.3
4.5 | _
_
_ | ns | | | Hold Time
(I/O)n, DS0,
DS7 to CP | tsu | 1.5
3.3
5 | 0
0
0 | | 0
0
0 | _
_
_ | ns | | | Setup Time
MR to CP (323) | tsu | 1.5
3.3
5 | 61
6.8
4.8 | = | 69
7.8
5.5 | | ńs | | | Hold Time
MR to CP (323) | ţн | 1.5
3.3
5 | 0
0
0 | | 0
0
0 | _
_
_ | ns | | | Maximum CP
Frequency | fmax | 1.5
3.3
5 | 9
78
108 | = | 8
68
95 | —
— | MHz | | | CP Pulse
Width | tw | 1.5
3.3
5 | 57
6.4
4.6 | | 65
7.3
5.2 | | ns | | | MR Pulse
Width | tw | 1.5
3.3
5 | 55
6.1
4.4 | | 63
7
5 | <u>-</u> | ns | | | Recovery Time
MR to CP
299 | t _{REC} | 1.5
3.3
5 | 55
6.1
4.4 | <u>-</u>
- | 63
7
5 | -
-
- | ns | | *3.3 V: min. is @ 3 V †5 V: min is @ 4.5 V SWITCHING CHARACTERISTICS: AC Series; t_r, t_f = 3 ns, C_L = 50 pF | | . | | AMBI | ENT TEMPE | RATURE (| Γ _Λ) - °C | | | |-------------------------------------|--------------------------------------|-------------------|----------------|---------------------|----------------|-----------------------|-------|--| | CHARACTERISTICS | SYMBOL | V _{cc} | | o +85 | | 0 +125 | UNITS | | | | | (V) . | MIN. | MAX. | MIN. | MAX. | | | | Propagation Delays:
CP to Q0, Q7 | t _{PLH}
t _{PHL} | 1.5
3.3*
5† | 4.7
3.3 | 147
16.5
11.7 |
4.5
3.2 | 162
18.1
12.9 | ns | | | CP to (I/O)n | t _{PLH}
t _{PHL} | 1.5
3.3
5 |
4.9
3.5 | 154
17.2
12.3 | 4.7
3.4 | 169
18.9
13.5 | ns | | | MR to Q0, Q7
(299 only) | tpin
tphi | 1.5
3.3
5 | -
4
2.9 | 127
14.3
10.2 |
3.9
2.8 | 140
15.7
11.2 | ns | | | MR to (I/O)n | telн
tehl | 1.5
3.3
5 | 5
3.6 | 158
17.7
12.6 |
4.9
3.5 | 174
19.5
13.9 | ns | | | Enable and Disable
Times | tpzi
tpzh
tpiz
tphz | 1.5
3.3
5 |
5.8
3.8 | 169
20.4
13.5 | 5.6
3.7 | 186
22.4
14.9 | ns | | | Power Dissipation Capacitance | C _{PD} § | | 280 | Тур. | 280 | Тур. | pF | | | Input Capacitance | Cı | _ | _ | 10 | | 10 | pF | | | 3-State Output Capacitance | Co | | _ | 15 | | 15 | pF | | *3.3 V: min. is @ 3.6 V max. is @ 3 V †5 V: min. is @ 5.5 V max. is @ 4.5 V $\ensuremath{\mbox{\textsc{KC}}_{\mbox{\tiny PD}}}$ is used to determine the dynamic power consumption, per function. $P_D = C_{PD}V_{CC}^2 f_i + \Sigma (C_L V_{CC}^2 f_o)$ where $f_i = input$ frequency f_o = output frequency C_L = output load capacitance V_{CC} = supply voltage. ## PREREQUISITE FOR SWITCHING: ACT Series | | | ., | AMBI | ENT TEMPI | ERATURE (| T _A) - °C | | | |---|--------|------------------------|------|-----------|-----------|-----------------------|-------|--| | CHARACTERISTICS | SYMBOL | V _{cc}
(V) | | o +85 | T | o +125 | UNITS | | | | | (*/ | MIN. | MAX. | MIN. | MAX. | | | | Setup Time
S1, S0 to CP | tsu | 5* | 7.9 | _ | 9 | _ | ns | | | Hold Time
S1, S0 to CP | tii | 5 | 0 | _ | 0 | _ | ns | | | Setup Time
(I/O)n, DS0,
DS7 to CP | tsu | 5 | 3.9 | _ | 4.5 | _ | ns | | | Hold Time
(I/O)n, DS0,
DS7 to CP | ŧн | 5 | 0 | _ | 0 | _ | ns | | | Setup Time
MR to CP (323) | tsu | 5* | 4.8 | | 5.5 | _ | ns | | | Hold Time
MR to CP (323) | tн | 5 | 0 | | 0 | _ | ns | | | Maximum CP
Frequency | fmax | 5 | 103 | _ | 90 | | MHz | | | CP Pulse Width | tw | 5 | 4.8 | | 5.5 | | ns | | | MR Pulse Width | tw | 5 | 4.4 | _ | 5 | _ | ns | | | Recovery Time
MR to CP (299) | tnec | 5 | 4.4 | _ | 5 | - | ns | | ^{*5} V: min. is @ 4.5 V SWITCHING CHARACTERISTICS: ACT Series; t, t, = 3 ns, CL = 50 pF | | | | AMBII | (A) - °C | | | | |-------------------------------------|--------------------------------------|-----|-------|----------|------------|------|-------| | CHARACTERISTICS | SYMBOL | (V) | -40 t | o +85 | -55 to | +125 | UNITS | | | | (*) | MIN. | MAX. | MIN. | MAX. | | | Propagation Delays:
CP to Q0, Q7 | t _{PLH}
t _{PHL} | 5* | 3.3 | 11.7 | 3.2 | 12.9 | ns | | CP to (I/O)n | t _{PLH}
t _{PHL} | 5 | 43.7 | 13.2 | 3.6 | 14.5 | ns | | MR to Q0, Q7
(299 only) | t _{PLH}
t _{PHL} | 5 | 3.1 | 11.1 | 3.1 | 12.2 | ns | | MR to (I/O)n | t _{PLH}
t _{PHL} | 5 | 4.8 | 16.9 | 4.7 | 18.6 | ns | | Enable and Disable
Times | telz
tenz
tezl
tezn | 5 | 3.8 | 13.5 | 3.7 | 14.9 | ns | | Power Dissipation Capacitance | C _{PD} § | _ | 280 | Тур. | 280 | Тур. | pF | | Input Capacitance | Cı | | _ | 10 | | 10 | pF | | 3-State Output Capacitance | Co | | | 15 | <u>-</u> _ | 15 | pF | *5 V: min. is @ 5.5 V max. is @ 4.5 V C_{PD} is used to determine the dynamic power consumption, per function. $P_D = C_{PD} V_{CC}^2 \, f_i + \Sigma \, (C_L V_{CC}^2 \, f_o) + V_{CC} \Delta I_{CC} \, \text{where} \quad f_i = \text{input frequency}$ f_o = output frequency C_L = output load capacitance V_{cc} = supply voltage. Fig. 2 - Clock prerequisite and propagation delays. Fig. 3 - Master Reset prerequisite and propagation delays. Fig. 4 - Three-state propagation delay times and test circuit. Fig. 5 - Data prerequisite times. Fig. 6 - Test circuit. | | CD54/74AC | CD54/74ACT | |------------------------------|---------------------|---------------------| | Input Level | Vcc | 3 V | | Input Switching Voltage, Vs | 0.5 V _{cc} | 1.5 V | | Output Switching Voltage, Vs | 0.5 V _{cc} | 0.5 V _{CC} | 24-Jan-2013 #### **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Top-Side Markings | Samples | |------------------|--------|--------------|--------------------|------|-------------|----------------------------|------------------|--------------------|--------------|-------------------|---------| | CD54AC299F3A | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | CD54AC299F3A | Samples | | CD54ACT299F3A | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | CD54ACT299F3A | Samples | | CD74AC299M96 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | AC299M | Samples | | CD74AC299M96E4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | AC299M | Samples | | CD74AC299M96G4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | AC299M | Samples | | CD74AC323M | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | AC323M | Samples | | CD74AC323MG4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | AC323M | Samples | | CD74ACT299M | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT299M | Samples | | CD74ACT299M96 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT299M | Samples | | CD74ACT299M96E4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT299M | Samples | | CD74ACT299M96G4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT299M | Samples | | CD74ACT299MG4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT299M | Samples | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. **TBD:** The Pb-Free/Green conversion plan has not been defined. ⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. ## PACKAGE OPTION ADDENDUM 24-Jan-2013 **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. ⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF CD54AC299, CD54ACT299, CD74AC299, CD74ACT299: Catalog: CD74AC299, CD74ACT299 www.ti.com Military: CD54AC299, CD54ACT299 NOTE: Qualified Version Definitions: - Catalog TI's standard catalog product - Military QML certified for Military and Defense Applications ## PACKAGE MATERIALS INFORMATION www.ti.com 26-Jan-2013 ## TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE ## *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | CD74AC299M96 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.0 | 2.7 | 12.0 | 24.0 | Q1 | | CD74ACT299M96 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.0 | 2.7 | 12.0 | 24.0 | Q1 | www.ti.com 26-Jan-2013 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------|--------------|-----------------|------|------|-------------|------------|-------------| | CD74AC299M96 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | | CD74ACT299M96 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | ### 14 LEADS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. DW (R-PDSO-G20) ## PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AC. DW (R-PDSO-G20) PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Refer to IPC7351 for alternate board design. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC—7525 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u> RFID www.ti-rfid.com OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u> Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>