Octal Buffer/Line Drivers, 3-State CD74AC/ACT540 - Inverting CD74AC/ACT541 - Non-Inverting #### **Type Features:** - Buffered inputs - Typical propagation delay: 4.5 ns @ V_{CC} = 5 V, T_A = 25° C, C_L = 50 pF The CD54/74AC540, -541, and CD54/74ACT540, -541 octal buffer/line drivers use the RCA ADVANCED CMOS technology. The CD54/74AC/ACT540 are inverting 3-state buffers having two active-LOW output enables. The CD54/74AC/ACT541 are non-inverting 3-state buffers having two active-LOW output enables. The CD74AC540, -541, and CD74ACT540, -541 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Industrial (–40 to +85°C) and Extended Industrial/Military (–55 to +125°C). The CD54AC540, -541, and CD54ACT540, -541, available in chip form (H suffix), are operable over the -55 to +125°C temperature range. #### **Family Features:** - Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015 - SCR-Latchup-resistant CMOS process and circuit design - Speed of bipolar FAST®/AS/S with significantly reduced power consumption - Balanced propagation delays - AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply. - ± 24-mA output drive current - Fanout to 15 FAST® ICs - Drives 50-ohm transmission lines #### **TRUTH TABLE** | | CD54/74AC | /ACT540 | | |----------|-----------|---------|--| | INPUTS | | OUTPUTS | | | OE1, OE2 | Α | Υ | | | L | L | Н | | | <u>L</u> | н | L | | | н | Х | _ · Z | | #### **TRUTH TABLE** | | CD54/74AC | /ACT541 | | |----------|-----------|---------|--| | INPUTS | | OUTPUTS | | | OE1, OE2 | Α | Υ | | | L | L | L | | | L | н | Н | | | н | x | Z | | H = High Voltage L = Low Voltage X = Immaterial Z = High Impedance [®]FAST is a Registered Trademark of Fairchild Semiconductor Corp. | MAXIMUM RATINGS, Absolute-Maximum Values: | | |---|---------------| | DC SUPPLY-VOLTAGE (V _{CC}) | 0.5 to 6 V | | DC INPUT DIODE CURRENT, $I_{ K }$ (for $V_{ } < -0.5$ or $V_{ } > V_{CC} + 0.5$ V) | ±20 mA | | DC OUTPUT DIODE CURRENT, I_{OK} (for $V_O < -0.5$ or $V_O > V_{CC} + 0.5$ V) | ±50 mA | | DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, IO (for VO > -0.5 or VO < VCC + 0.5 V) | ±50 mA | | DC V _{CC} OR GROUND CURRENT (I _{CC} or I _{GND}) | ±100 mA* | | PACKAGE THERMAL IMPEDANCE, θJA (see Note 1): E package | 69°C/W | | M package | 58°C/W | | STORAGE TEMPERATURE (T _{stq}) | –65 to +150°C | | LEAD TEMPERATURE (DURINĞ SOLDERING): | | | At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s maximum | +265°C | | Unit inserted into PC board min. thickness 1/16 in. (1.59 mm) with solder contacting lead tips only | +300°C | | * For up to 4 outputs per device; add +25 mA for each additional output | | ### **RECOMMENDED OPERATING CONDITIONS:** For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges: | CHARACTERICTIC | LIM | LIMITO | | |---|-------------|----------------|----------------------| | CHARACTERISTIC | MIN. | MAX. | UNITS | | Supply-Voltage Range, V _{cc} *:
(For T _A = Full Package-Temperature Range)
AC Types
ACT Types | 1.5
4.5 | 5.5
5.5 | V | | DC Input or Output Voltage, V _I , V _O | 0 | Vcc | V | | Operating Temperature, T _A : | -55 | +125 | °C | | Input Rise and Fall Slew Rate, dt/dv
at 1.5 V to 3 V (AC Types)
at 3.6 V to 5.5 V (AC Types)
at 4.5 V to 5.5 V (ACT Types) | 0
0
0 | 50
20
10 | ns/V
ns/V
ns/V | ^{*}Unless otherwise specified, all voltages are referenced to ground. #### **TERMINAL ASSIGNMENT DIAGRAMS** NOTE 1: The package thermal impedance is calculated in accordance with JESD 51. | Technical Data _ | | |------------------|--| |------------------|--| STATIC ELECTRICAL CHARACTERISTICS: AC Series | | | | | | AMBIENT TEMPERATURE (TA) - °C | | | | | | | |----------------------------------|-----------------|----------------------------------|------------------------|-----------------|-------------------------------|------|--------|-------|--------------|------|-------| | CHARACTERISTICS | | TEST CO | NDITIONS | V _{cc} | +: | 25 | -40 to | o +85 | -55 to | +125 | UNITS | | | | V, (V) | l _o
(mA) | (V) | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | High-Level Input | | | , | 1.5 | 1.2 | _ | 1.2 | | 1.2 | | | | Voltage | V _{iH} | | | 3 | 2.1 | _ | 2.1 | _ | 2.1 | | V | | | | | | 5.5 | 3.85 | _ | 3.85 | l – | 3.85 | | l | | Low-Level Input | | | | 1.5 | | 0.3 | _ | 0.3 | | 0.3 | | | Voltage | VIL | : | | 3 | | 0.9 | _ | 0.9 | - | 0.9 | V | | | | | | 5.5 | - | 1.65 | _ | 1.65 | | 1.65 |] | | High-Level Output | | | -0.05 | 1.5 | 1.4 | _ | 1.4 | _ | 1.4 | _ | | | Voltage | V _{OH} | V _{IH} | -0.05 | - 3 | 2.9 | _ | 2.9 | | 2.9 | | | | | | or | -0.05 | 4.5 | 4.4 | _ | . 4.4 | _ | 4.4 | _ | 1 | | | | VIL | -4 | 3 | 2.58 | _ | 2.48 | | 2.4 | _ |] v | | | | | -24 | 4.5 | 3.94 | _ | 3.8 | _ | 3.7 | |] | | | | " " 1 | -75 | 5.5 | | | 3.85 | | _ | |] | | | | #, * } | -50 | 5.5 | _ | | _ | | 3.85 | | 1 | | Low-Level Output | | , | 0.05 | 1.5 | | 0.1 | | 0.1 | _ | 0.1 | | | Voltage | V_{OL} | VIII | 0.05 | 3 | _ | 0.1 | _ | 0.1 | | 0.1 | 1 | | | | or | 0.05 | 4.5 | _ | 0.1 | _ | 0.1 | _ | 0.1 | 1 | | | | Vil | 12 | 3 | | 0.36 | _ | 0.44 | _ | 0.5 | V | | | | | 24 | 4.5 | _ | 0.36 | _ | 0.44 | | 0.5 | 1 | | | | (| 75 | 5.5 | _ | | _ | 1.65 | | _ |] | | | | #. * } | 50 | 5.5 | _ | | _ | _ | | 1.65 | 1 | | Input Leakage
Current | l _i | V _{cc}
or
GND | | 5.5 | _ | ±0.1 | _ | ±1 | - | ±1 | μΑ | | 3-State Leakage
Current | loz | V _{IH} | | | | | | | | | | | | | V _{IL} V _O = | | 5.5 | _ | ±0.5 | _ | ±5 | _ | ±10 | μΑ | | | | or
GND | | | | | | | | | | | Quiescent Supply
Current, MSI | Icc | V _∞
or
GND | 0 | 5.5 | _ | 8 | _ | 80 | _ | 160 | μΑ | [#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. * Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C. ### STATIC ELECTRICAL CHARACTERISTICS: ACT Series | CHARACTERISTICS | | | | | | AMBIEN | TEMPE | RATURE | (T _A) - °(| С |] | |---|-----------------------|----------------------------------|------------------------|------------------|------|--------|------------|--------|------------------------|------|-------| | | | TEST CONDITIONS | | V _{cc} | + | 25 | -40 to +85 | | -55 to +125 | | UNITS | | | | | I _o
(mA) | (V) | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. |] | | High-Level Input
Voltage | ViH | | | 4.5
to
5.5 | 2 | _ | 2 | _ | 2 | _ | v | | Low-Level Input
Voltage | VIL | | | 4.5
to
5.5 | | 0.8 | | 0.8 | _ | 0.8 | v | | High-Level Output | | ViH | -0.05 | 4.5 | 4.4 | _ | 4.4 | | 4.4 | | | | Voltage | V _{OH} | or
V _{IL} | -24 | 4.5 | 3.94 | | 3.8 | | 3.7 | | v | | | | #, * { | -75 | 5.5 | _ | | 3.85 | | _ | |] . | | | | ") | -50 | 5.5 | | _ | _ | | 3.85 | _ | | | Low-Level Output | | ViH | 0.05 | 4.5 | _ | 0.1 | | 0.1 | | 0.1 | | | Voltage Vol | or
V _{IL} | 24 | 4.5 | | 0.36 | | 0.44 | _ | 0.5 | v | | | | #, * { | 75 | 5.5 | | | _ | 1.65 | | |] | | | | | ··· \ | 50 | 5.5 | | | | | | 1.65 | | | Input Leakage
Current | l, | V _{CC}
or
GND | | 5.5 | _ | ±0.1 | _ | ±1 | | ±1 | μА | | 3-State Leakage
Current | loz | VIH or VIL Vo = Vcc or GND | | 5.5 | _ | ±0.5 | | ±5 | _ | ±10 | μΑ | | Quiescent Supply
Current, MSI | lcc | V _{cc}
or
GND | 0 | 5.5 | _ | 8 | _ | 80 | | 160 | μΑ | | Additional Quiescent
Current per Input P
TTL Inputs High
1 Unit Load | | V _{cc} -2.1 | | 4.5
to
5.5 | | 2.4 | | 2.8 | | 3 | mA | [#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. * Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C. #### **ACT INPUT LOADING TABLE** | INPUT | UNIT | LOAD* | | |----------|------|-------|--| | | 540 | 541 | | | DATA | 1.42 | 0.5 | | | OE1, OE2 | 1.3 | 1.3 | | *Unit load is Δl_{CC} limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25° C. SWITCHING CHARACTERISTICS: AC Series; t,, t, = 3 ns, C, = 50 pF | | | | AMBI | ENT TEMPE | RATURE (1 | (A) - °C | | |---|--------------------------------------|-------------------|------------------------------------|---------------------|---------------|-------------------|-------| | CHARACTERISTICS | SYMBOL | (V) | -40 1 | o +85 | -55 to | 0 +125 | UNITS | | | 1 1 | (*/ | MIN. | MAX. | MIN. | MAX. | 7 | | Propagation Delays:
Data to Output
AC540 | tpLH
tpHL | 1.5
3.3*
5† | 2.4
1.8 | 77
8.6
6.2 | 2.4
1.7 | 85
9.5
6.8 | ns | | AC541 | t _{PLH}
t _{PHL} | 1.5
3.3
5 |
2.8
2.1 | 89
9.9
7.1 | 2.7
2 | 98
10.9
7.8 | ns | | Enable, to Output
to Output | t _{PZL}
t _{PZH} | 1.5
3.3
5 | 4.6
3.1 | 136
16.4
10.9 | -
4.5
3 | 150
18
12 | ns | | Disable to Output to Output | t _{PLZ}
t _{PHZ} | 1.5
3.3
5 | 3.9
3.1 | 136
13.6
10.9 | -
3.8
3 | 150
15
12 | ns | | Power Dissipation Capacitance
AC540
AC541 | C _{PD} ‡ | <u> </u> | 60 Typ. 60 Typ.
60 Typ. 60 Typ. | | | pF | | | Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching) | V _{онv}
See
Fig. 1 | 5 | | V | | | | | Max. (Peak) Vol. During Switching of Other Outputs (Output Under Test Not Switching) | V _{OLP}
See
Fig. 1 | 5 | 1 Typ. @ 25°C | | | V | | | Input Capacitance | Cı | _ | _ | 10 | _ | 10 | pF | | 3-State Output Capacitance | Co | _ | <u> </u> | 15 | _ | 15 | pF | ### SWITCHING CHARACTERISTICS: ACT Series; t,, t, = 3 ns, C, = 50 pF | | | | | AMBIENT TEMPERATURE (TA) - °C | | | | | | |---|--------------------------------------|-----------------|------------------------------------|-------------------------------|--------|------|-------|--|--| | CHARACTERISTICS | SYMBOL | V _{cc} | -40 to +85 | | -55 to | =125 | UNITS | | | | | | (V) | MIN. | MAX. | MIN. | MAX. |] | | | | Propagation Delays:
Data to Output
ACT540 | tpLH
tpHL | 5† | 1.9 | 6.5 | 1.8 | 7.2 | ns | | | | ACT541 | t _{PLH}
t _{PHL} | 5† | 2.1 | 7.5 | 2.1 | 8.2 | ns | | | | Enable to Output | t _{PZL}
t _{PZH} | 5 | 3.5 | 12.2 | 3.4 | 13.4 | ns | | | | Disable to Output | t _{PLZ}
t _{PHZ} | 5 | 3.5 | 12.2 | 3.4 | 13.4 | ns | | | | Power Dissipation Capacitance
ACT540
ACT541 | C _{PO} § | - | 60 Typ. 60 Typ.
60 Typ. 60 Typ. | | | pF | | | | | Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching) | V _{онv}
See
Fig. 1 | 5 | | ı V | | | | | | | Max. (Peak) V _{OL} During Switching of Other Outputs (Output Under Test Not Switching) | V _{OLP}
See
Fig. 1 | 5 | 1 Typ. @ 25°C | | | v | | | | | Input Capacitance | Cı | | T - | 10 | _ | 10 | ρF | | | | 3-State Output Capacitance | Co | . — | _ | 15 | _ | 15 | pF | | | *3.3 V: min. is @ 3.6 V max. is @ 3 V §C_{PD} is used to determine the dynamic power consumption, per channel. For AC series, $P_D = V_{cc}^2 f_i (C_{PD} + C_L)$ For ACT series, $P_D = V_{cc}^2 f_i (C_{PD} + C_L) + V_{cc} \Delta I_{cc}$ where f_i = input frequency C_L = output load capacitance V_{CC} = supply voltage. #### PARAMETER MEASUREMENT INFORMATION #### NOTES: - 1. VOHY AND VOLP ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST. 2. INPUT PULSES HAVE THE FOLLOWING CHARACTERISTICS: - PRR ≤ 1 MHz, t₇ = 3 ns, t₁ = 3 ns, SKEW 1 ns. 3. R.F. FIXTURE WITH 700-MHz DESIGN RULES REQUIRED. IC SHOULD BE SOLDERED INTO TEST BOARD AND BYPASSED WITH 0.1 pF CAPACITOR. SCOPE AND PROBES REQUIRE 700-MHz BANDWIDTH. 9205-42406 *FOR AC SERIES ONLY: WHEN v_{CC} = 1.5 V, r_L = 1 $k\Omega$ Fig. 1 - Simultaneous switching transient waveforms. Fig. 2 - Three-state propagation delay waveforms and test circuit. Fig. 3 - Propagation delay times and test circuit. | | CD54/74AC | CD54/74ACT | |--|---------------------|---------------------| | Input Level | V _{cc} | 3 V | | Input Switching Vottage, Vs | 0.5 V _{cc} | 1.5 V | | Output Switching Voltage, V ₅ | 0.5 V _{CC} | 0.5 V _{cc} | 6-Jan-2013 ## **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Samples
(Requires Login) | |------------------|----------|--------------|--------------------|------|-------------|----------------------------|------------------|--------------------|-----------------------------| | CD54AC541F3A | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | CD54ACT540F3A | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | CD54ACT541F3A | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | | CD74AC540M | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74AC540ME4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74AC540MG4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74AC541E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | | CD74AC541EE4 | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | | CD74AC541M | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74AC541M96 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74AC541M96E4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74AC541M96G4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74AC541ME4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74AC541MG4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74AC541SM | OBSOLETE | SSOP | DB | 20 | | TBD | Call TI | Call TI | | | CD74AC541SM96 | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74AC541SM96E4 | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74AC541SM96G4 | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74ACT540E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | 6-Jan-2013 | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Samples
(Requires Login) | |------------------|----------|--------------|--------------------|------|-------------|----------------------------|------------------|--------------------|-----------------------------| | CD74ACT540EE4 | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | | CD74ACT540M | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74ACT540M96 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74ACT540M96E4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74ACT540M96G4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74ACT540ME4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74ACT540MG4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74ACT541E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | | CD74ACT541EE4 | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | | CD74ACT541M | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74ACT541M96 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74ACT541M96E4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74ACT541M96G4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74ACT541ME4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74ACT541MG4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74ACT541SM | OBSOLETE | SSOP | DB | 20 | | TBD | Call TI | Call TI | | | CD74ACT541SM96 | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | | CD74ACT541SM96E4 | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | www.ti.com 6-Jan-2013 | Orderable Device | Status | Package Type | _ | Pins | Package Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Samples | |------------------|--------|--------------|---------|------|-------------|----------------------------|------------------|--------------------|------------------| | | (1) | | Drawing | | | (2) | | (3) | (Requires Login) | | CD74ACT541SM96G4 | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF CD54AC541, CD54ACT540, CD54ACT541, CD74AC541, CD74ACT540, CD74ACT541: - Catalog: CD74AC541, CD74ACT540, CD74ACT541 - Military: CD54AC541, CD54ACT540, CD54ACT541 NOTE: Qualified Version Definitions: Catalog - TI's standard catalog product 6-Jan-2013 • Military - QML certified for Military and Defense Applications ## PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 ## TAPE AND REEL INFORMATION ### **REEL DIMENSIONS** ### **TAPE DIMENSIONS** | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### TAPE AND REEL INFORMATION ### *All dimensions are nominal | Device | _ | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |----------------|------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | CD74AC541M96 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.0 | 2.7 | 12.0 | 24.0 | Q1 | | CD74AC541SM96 | SSOP | DB | 20 | 2000 | 330.0 | 16.4 | 8.2 | 7.5 | 2.5 | 12.0 | 16.0 | Q1 | | CD74ACT540M96 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.0 | 2.7 | 12.0 | 24.0 | Q1 | | CD74ACT541M96 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.0 | 2.7 | 12.0 | 24.0 | Q1 | | CD74ACT541SM96 | SSOP | DB | 20 | 2000 | 330.0 | 16.4 | 8.2 | 7.5 | 2.5 | 12.0 | 16.0 | Q1 | www.ti.com 14-Jul-2012 *All dimensions are nominal | 7 til dilliciololio ale nomina | | | | | | | | |--------------------------------|--------------|-----------------|------|------|-------------|------------|-------------| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | CD74AC541M96 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | | CD74AC541SM96 | SSOP | DB | 20 | 2000 | 367.0 | 367.0 | 38.0 | | CD74ACT540M96 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | | CD74ACT541M96 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | | CD74ACT541SM96 | SSOP | DB | 20 | 2000 | 367.0 | 367.0 | 38.0 | ### 14 LEADS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. ## N (R-PDIP-T**) ## PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. DW (R-PDSO-G20) ## PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AC. ## DB (R-PDSO-G**) ## PLASTIC SMALL-OUTLINE ### **28 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150 #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u> RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>