CD54HC4351, CD74HC4351, CD74HC4352 Data sheet acquired from Harris Semiconductor SCHS213C is defined inductor September 1998 - Revised July 2003 # High-Speed CMOS Logic Analog Multiplexers/Demultiplexers with Latch #### Features • Wide Analog Input Voltage Range ±5V (Max) · Low "On" Resistance - V_{CC} - V_{EE} = 4.5 V_{CC} - V_{FE} = 9 - 9 V_{CC} - V_{FE} = 9 V_{CC} - V_{FE} - V_{CC} - V_{FE} - 9 V_{CC} - V - Low Crosstalk Between Switches - Fast Switching and Propagation Speeds - · "Break-Before-Make" Switching - Wide Operating Temperature Range . . . -55°C to 125°C - HC Types - 2V to 6V Operation, Control; 0V to 10V Switch - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V - HCT Types - 4.5V to 5.5V Operation, Control; 0V to 10V Switch - Direct LSTTL Input Logic Compatibility, V_{IL}= 0.8V (Max), V_{IH} = 2V (Min) - CMOS Input Compatibility, I_I \leq 1 μ A at V_{OL}, V_{OH} ### Description The 'HC4351, CD74HCT4351, and CD74HC4352 are digitally controlled analog switches which utilize silicon-gate CD54HC4351 (CERDIP) CMOS technology to achieve operating speeds similar to LSTTL with the low power consumption of standard CMOS integrated circuits. These analog multiplexers/demultiplexers are, in essence, the HC/HCT4015 and HC4052 preceded by address latches that are controlled by an active low Latch Enable input ($\overline{\text{LE}}$). Two Enable inputs, one active low ($\overline{\text{E1}}$), and the other active high (E2) are provided allowing enabling with either input voltage level. #### **Ordering Information** | PART NUMBER | TEMP. RANGE
(°C) | PACKAGE | |---------------|---------------------|--------------| | CD54HC4351F3A | -55 to 125 | 20 Ld CERDIP | | CD74HC4351E | -55 to 125 | 20 Ld PDIP | | CD74HC4351M | -55 to 125 | 20 Ld SOIC | | CD74HC4351M96 | -55 to 125 | 20 Ld SOIC | | CD74HCT4351E | -55 to 125 | 20 Ld PDIP | | CD74HC4352E | -55 to 125 | 20 Ld PDIP | NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. #### **Pinouts** TRUTH TABLE 'HC4351, CD74HCT4351 | | INI | PUT STAT | ES | | (NOTE 1)
"ON" | |-----------|-----|----------|------------|----|--------------------| | <u>E1</u> | E2 | S2 | S 1 | S0 | SWITCHES
LE = H | | L | Н | L | L | L | A ₀ | | L | Н | L | L | Н | A ₁ | | L | Н | L | Н | L | A ₂ | | L | Н | L | Н | Н | A ₃ | | L | Н | Н | L | L | A ₄ | | L | Н | Н | L | Н | A ₅ | | L | Н | Н | Н | L | A ₆ | | L | Н | Н | Н | Н | A ₇ | | Н | L | Х | Х | Х | None | H = High Voltage Level, L = Low Voltage Level, X = Don't Care NOTE: FIGURE 1. DETAIL OF ONE HC/HCT4351 SWITCH ^{1.} When $\overline{\text{LE}}$ is low S0-S2 data are latched and switches cannot change state. #### **Absolute Maximum Ratings** | DC Supply Voltage, V _{CC} 0.5V to 7V DC Supply Voltage, V _{CC} - V _{EE} 0.5V to 10.5V DC Supply Voltage, V _{EE} 0.5V to -7V DC Input Diode Current, $I_{\rm IK}$ | |--| | For $V_1 < -0.5V$ or $V_1 > V_{CC} = 0.5V + +$ | | DC Switch Diode Current, I _{OK} | | For $V_I < V_{EE}$ -0.5V or $V_I < V_{CC} + 0.5V$ ±25mA | | DC Switch Current, I _{OK} (Note 3) | | For $V_I > V_{EE}$ -0.5V or $V_I < V_{CC} + 0.5V$ ±20mA | | DC Output Diode Current, I _{OK} | | For $V_0 < -0.5V$ or $V_0 > V_{CC} + 0.5V$ ± 20 mA | | DC Output Source or Sink Current per Output Pin, IO | | For $V_O > -0.5V$ or $V_O < V_{CC} + 0.5V$ ±25mA | | DC V _{CC} or Ground Current, I _{CC} | | | #### **Thermal Information** | Thermal Resistance (Typical, Note 4) | θ_{JA} (°C/W) | |--|----------------------| | E (PDIP) Package | 69 | | M (SOIC) Package | | | Maximum Junction Temperature | 150 ^o C | | Maximum Storage Temperature Range | 65°C to 150°C | | Maximum Lead Temperature (Soldering 10s) | 300°C | | (SOIC - Lead Tips Only) | | #### **Operating Conditions** | Temperature Range, T _A | |---| | Supply Voltage Range, V _{CC} | | HC Types | | HCT Types | | Supply Voltage Range, V _{CC} - V _{FF} | | HC, HCT Types (Figure 3)2V to 10V | | Supply Voltage Range, V _{EE} | | HC, HCT Types (Figure 4) | | DC Input or Output Voltage, V ₁ GND to V _{CC} | | Analog Switch I/O Voltage, V _{IS} V _{EE} (Min) | | V _{CC} (Max) | | Input Rise and Fall Time, t _r , t _f | | 2V | | 4.5V 500ns (Max) | | 6V | | | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTES: - 3. In certain applications, the external load-resistor current may include both V_{CC} and signal-line components. To avoid drawing V_{CC} current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.6V (calculated from R_{ON} values shown in the DC Electrical Specifications table). No V_{CC} current will flow through R_L if the switch current flows into terminal 3 on the 'HC4351 and CD74HCT4351; terminals 3 and 13 on the CD74HC4352. - 4. The package thermal impedance is calculated in accordance with JESD 51-7. #### Recommended Operating Area as a Function of Supply Voltage FIGURE 3. FIGURE 4. # **DC Electrical Specifications** | | | | TEST COND | OITIONS | | | 25°C | | | C TO
C | -55°C TO
125°C | | | |--------------------------------------|------------------|---------------------------|---|------------------------|------------------------|------|------|------|------|-----------|-------------------|------|-------| | PARAMETER | SYMBOL | V _I (V) | V _{IS} (V) | V _{EE}
(V) | V _{CC}
(V) | MIN | ТҮР | мах | MIN | мах | MIN | MAX | UNITS | | HC TYPES | | | | | | | | | | | | | | | High Level Input | V _{IH} | - | - | - | 2 | 1.5 | - | - | 1.5 | - | 1.5 | - | V | | Voltage | | | | | 4.5 | 3.15 | - | - | 3.15 | - | 3.15 | - | V | | | | | | | 6 | 4.2 | - | - | 4.2 | - | 4.2 | - | V | | Low Level Input | V _{IL} | - | - | - | 2 | - | - | 0.5 | - | 0.5 | - | 0.5 | V | | Voltage | | | | | 4.5 | - | - | 1.35 | - | 1.35 | - | 1.35 | V | | | | | | | 6 | - | - | 1.8 | - | 1.8 | - | 1.8 | V | | "ON" Resistance | R _{ON} | V _{IH} or | V _{CC} or V _{EE} | 0 | 4.5 | - | 70 | 160 | - | 200 | - | 240 | Ω | | I _O = 1mA
Figure 9 | | V _{IL} | , | 0 | 6 | - | 60 | 140 | - | 175 | - | 210 | Ω | | · · | | | , | -4.5 | 4.5 | - | 40 | 120 | - | 150 | - | 180 | Ω | | | | | V _{CC} to V _{EE} | 0 | 4.5 | - | 90 | 180 | - | 225 | - | 270 | Ω | | | | | | 0 | 6 | - | 80 | 160 | - | 200 | - | 240 | Ω | | | | | | -4.5 | 4.5 | - | 45 | 130 | - | 162 | - | 195 | Ω | | Maximum "ON" | ΔR _{ON} | - | - | 0 | 4.5 | - | 10 | - | - | - | - | - | Ω | | Resistance Between Any Two Channels | | | , | 0 | 6 | - | 8.5 | - | - | - | - | - | Ω | | , | | | | -4.5 | 4.5 | - | 5 | - | - | - | - | - | Ω | | Switch On/Off | I _{IZ} | V _{IH} or | For Switch | 0 | 6 | - | - | ±0.1 | - | ±1 | - | ±1 | μА | | Leakage Current
4 Channels (4352) | | V_{IL} | OFF:
When | -5 | 5 | - | - | ±0.2 | - | ±2 | - | ±2 | μА | | Switch On/Off | İ | | $V_{IS} = V_{CC}$
$V_{OS} = V_{EE}$; | 0 | 6 | - | - | ±0.2 | - | ±2 | - | ±2 | μА | | Leakage Current
8 Channels (4351) | | | When VIS = VEE, VOS = VCC For Switch ON: All Applicable Combinations of VIS and VOS Voltage Levels | -5 | 5 | - | - | ±0.4 | 1 | ±4 | - | ±4 | μА | | Control Input Leakage
Current | I _{IL} | V _{CC} or
GND | - | 0 | 6 | - | - | ±0.1 | - | ±1 | - | ±1 | μА | | Quiescent Device
Current | I _{CC} | V _{CC} or
GND | When | 0 | 6 | - | - | 8 | - | 80 | - | 160 | μА | | I _O = 0 | | JUND | $\begin{aligned} & V_{IS} = V_{EE}, \\ & V_{OS} = V_{CC}, \\ & When \\ & V_{IS} = V_{CC}, \\ & V_{OS} = V_{EE} \end{aligned}$ | -5 | 5 | - | - | 16 | - | 160 | - | 320 | μА | # DC Electrical Specifications (Continued) | | | | TEST COND | ITIONS | | | 25°C | | -40°C TO
85°C | | -55°C TO
125°C | | | |--|------------------------------|-------------------------------|--|------------------------|---------------------|-----|------|------|------------------|-----|-------------------|-----|-------| | PARAMETER | SYMBOL | V _I (V) | V _{IS} (V) | V _{EE}
(V) | V _{CC} (V) | MIN | ТҮР | мах | MIN | мах | MIN | мах | UNITS | | HCT TYPES | | | | | | | | | | | | | | | High Level Input
Voltage | V _{IH} | - | - | - | 4.5 to
5.5 | 2 | - | - | 2 | - | 2 | - | ٧ | | Low Level Input
Voltage | V _{IL} | - | - | - | 4.5 to
5.5 | - | - | 0.8 | - | 0.8 | - | 0.8 | ٧ | | "ON" Resistance | R _{ON} | V _{IH} or | V _{CC} or V _{EE} | 0 | 4.5 | - | 70 | 160 | - | 200 | - | 240 | Ω | | I _O = 1mA
Figure 9 | | V _{IL} | | -4.5 | 4.5 | - | 40 | 120 | - | 150 | - | 180 | Ω | | - | | | V_{CC} to V_{EE} | 0 | 4.5 | - | 90 | 180 | - | 225 | - | 270 | Ω | | | | | | -4.5 | 4.5 | - | 45 | 130 | - | 162 | - | 195 | Ω | | Maximum "ON" | ΔR _{ON} | - | - | 0 | 4.5 | - | 10 | - | - | - | - | - | Ω | | Resistance Between
Any Two Channels | | | | -4.5 | 4.5 | - | 5 | - | - | - | - | - | Ω | | Switch On/Off | I _{IZ} | V _{IH} or | For Switch | 0 | 6 | - | - | ±0.1 | - | ±1 | - | ±1 | μА | | Leakage Current
4 Channels (4352) | | V _{IL} | OFF:
When
V _{IS} = V _{CC}
V _{OS} = V _{EE} ; | -5 | 5 | - | - | ±0.2 | - | ±2 | - | ±2 | μΑ | | Switch On/Off | | | | 0 | 6 | - | - | ±0.2 | - | ±2 | - | ±2 | μА | | Leakage Current
8 Channels (4351) | | | When VIS = VEE, VOS = VCC For Switch ON: All Applicable Combinations of VIS and VOS Voltage Levels | -5 | 5 | - | - | ±0.4 | - | ±4 | - | ±4 | μА | | Control Input Leakage
Current | l _l | V _{CC} or
GND | - | 0 | 5.5 | - | - | ±0.1 | - | ±1 | - | ±1 | μΑ | | Quiescent Device | Icc | Any | When | 0 | 5.5 | - | - | 8 | - | 80 | - | 160 | μА | | Current
I _O = 0 | | Voltage Be- tween VCC and GND | $V_{IS} = V_{EE},$ $V_{OS} = V_{CC},$ $When$ $V_{IS} = V_{CC},$ $V_{OS} = V_{EE}$ | -4.5 | 5.5 | - | - | 16 | - | 160 | - | 320 | μА | | Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load | ΔI _{CC}
(Note 5) | V _{CC}
-2.1 | - | - | 4.5 to
5.5 | - | 100 | 360 | - | 450 | - | 490 | μА | #### NOTE: ### **HCT Input Loading Table** | TYPE | INPUT | UNIT LOADS | |--------------|------------|------------| | All | E1, E2, Sn | 0.5 | | (4351, 4352) | LE | 1.5 | NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Table, e.g., 360 μ A max at 25 o C. ^{5.} For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA. # Switching Specifications Input t_r , $t_f = 6ns$ | | | TEST | V _{EE} | v _{cc} | | 25°C | | | C TO
C | | C TO
5°C | | |---|-------------------------------------|-----------------------|-----------------|-----------------|-----|------|-----|-----|-----------|-----|-------------|-------| | PARAMETER | SYMBOL | CONDITIONS | (V) | (V) | MIN | TYP | MAX | MIN | МАХ | MIN | MAX | UNITS | | HC TYPES | | | | | • | | | | | | | | | Propagation Delay,
Switch In to Switch Out | t _{PLH} , t _{PHL} | C _L = 50pF | 0 | 2 | - | - | 35 | - | 45 | - | 55 | ns | | Switch in to Switch Out | | | 0 | 4.5 | - | - | 7 | - | 9 | - | 11 | ns | | | | | 0 | 6 | - | - | 6 | - | 8 | - | 9 | ns | | | | | -4.5 | 4.5 | - | - | 5 | - | 7 | - | 8 | ns | | Maximum Switch Turn "ON"
Delay 4351 | t _{PZH} , t _{PZL} | C _L = 50pF | 0 | 2 | - | - | 300 | - | 375 | - | 450 | ns | | E1, E2, LE to V _{OS} | | | 0 | 4.5 | - | - | 60 | - | 75 | - | 90 | ns | | | | | 0 | 6 | - | - | 51 | - | 64 | - | 77 | ns | | | | | -4.5 | 4.5 | - | - | 55 | - | 69 | - | 83 | ns | | | | C _L = 15pF | - | 5 | - | 27 | - | - | - | - | - | ns | | Maximum Switch Turn "ON"
Delay 4352 | t _{PZH} , t _{PZL} | C _L = 50pF | 0 | 2 | - | - | 350 | - | 440 | - | 525 | ns | | E1, E2, LE to V _{OS} | | | 0 | 4.5 | - | - | 70 | - | 88 | - | 105 | ns | | | | | 0 | 6 | - | - | 60 | - | 75 | - | 90 | ns | | | | | -4.5 | 4.5 | - | - | 60 | - | 75 | - | 90 | ns | | | | C _L = 15pF | - | 5 | - | 35 | - | - | - | - | - | ns | | Maximum Switch Turn "ON"
Delay 4351 | t _{PZH} , t _{PZL} | C _L = 50pF | 0 | 2 | - | - | 300 | - | 375 | - | 450 | ns | | Sn to V _{OS} | | | 0 | 4.5 | - | - | 60 | - | 75 | - | 90 | ns | | | | | 0 | 6 | - | - | 51 | - | 64 | - | 77 | ns | | | | | -4.5 | 4.5 | - | - | 50 | - | 63 | - | 75 | ns | | | | C _L = 15pF | - | 5 | - | 27 | - | - | - | - | - | ns | | Maximum Switch Turn "ON"
Delay 4352 | t _{PZH} , t _{PZL} | C _L = 50pF | 0 | 2 | - | - | 375 | - | 470 | - | 565 | ns | | Sn to V _{OS} | | | 0 | 4.5 | - | - | 75 | - | 94 | - | 113 | ns | | | | | 0 | 6 | - | - | 64 | - | 80 | - | 96 | ns | | | | | -4.5 | 4.5 | - | - | 55 | - | 69 | - | 83 | ns | | | | C _L = 15pF | - | 5 | - | 35 | - | - | - | - | - | ns | | Maximum Switch Turn "OFF" Delay 4351 | t _{PHZ} , t _{PLZ} | C _L = 50pF | 0 | 2 | - | - | 250 | - | 315 | - | 375 | ns | | E1 to V _{OS} | | | 0 | 4.5 | - | - | 50 | - | 63 | - | 75 | ns | | | | | 0 | 6 | - | - | 43 | - | 54 | - | 64 | ns | | | | | -4.5 | 4.5 | - | - | 40 | - | 50 | - | 60 | ns | | | | C _L = 15pF | - | 5 | - | 21 | - | - | - | - | - | ns | # Switching Specifications Input $t_{\text{f}}, \, t_{\text{f}} = 6 \text{ns}$ (Continued) | | | TEST | V _{EE} | V _{CC} | | 25°C | | | C TO
C | | C TO
5°C | | |---|-------------------------------------|-----------------------|-----------------|-----------------|-----|------|-----|-----|-----------|-----|-------------|-------| | PARAMETER | SYMBOL | CONDITIONS | (V) | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | Maximum Switch Turn "OFF" | t _{PHZ} , t _{PLZ} | C _L = 50pF | 0 | 2 | - | - | 250 | - | 315 | - | 375 | ns | | Delay 4351
E2 to V _{OS} | | | 0 | 4.5 | - | - | 50 | - | 63 | - | 75 | ns | | | | | 0 | 6 | - | - | 43 | - | 54 | - | 64 | ns | | | | | -4.5 | 4.5 | - | - | 40 | - | 50 | - | 60 | ns | | | | C _L = 15pF | - | 5 | - | 21 | - | - | - | - | - | ns | | Maximum Switch Turn "OFF" | t _{PHZ} , t _{PLZ} | C _L = 50pF | 0 | 2 | - | - | 275 | - | 345 | - | 415 | ns | | Delay 4351
LE to V _{OS} | | | 0 | 4.5 | - | - | 55 | - | 69 | - | 83 | ns | | | | | 0 | 6 | - | - | 47 | - | 59 | - | 71 | ns | | | | | -4.5 | 4.5 | - | - | 45 | - | 56 | - | 68 | ns | | Maximum Switch Turn "OFF" | t _{PHZ} , t _{PLZ} | C _L = 50pF | 0 | 2 | - | - | 275 | - | 345 | - | 415 | ns | | Delay 4351
Sn to V _{OS} | | | 0 | 4.5 | - | - | 55 | - | 69 | - | 83 | ns | | | | | 0 | 6 | - | - | 47 | - | 59 | - | 71 | ns | | | | | -4.5 | 4.5 | - | - | 48 | - | 60 | - | 71 | ns | | | | C _L = 15pF | - | 5 | - | 21 | - | - | - | - | - | ns | | Maximum Switch Turn "OFF" | t _{PHZ} , t _{PLZ} | C _L = 50pF | 0 | 2 | - | - | 275 | - | 345 | - | 415 | ns | | Delay 4352
E1, E2, LE to V _{OS} | | | 0 | 4.5 | - | - | 55 | - | 69 | - | 83 | ns | | | | | 0 | 6 | - | - | 47 | - | 59 | - | 71 | ns | | | | | -4.5 | 4.5 | - | - | 50 | - | 63 | - | 75 | ns | | | | C _L = 15pF | - | 5 | - | 21 | - | - | - | - | - | ns | | Setup Time 4351 | tsu | C _L = 50pF | 0 | 2 | - | - | 60 | - | 75 | - | 90 | ns | | Sn to LE | | | 0 | 4.5 | - | - | 12 | - | 15 | - | 18 | ns | | | | | 0 | 6 | - | - | 10 | - | 13 | - | 15 | ns | | | | | -4.5 | 4.5 | - | - | 18 | - | 23 | - | 27 | ns | | Hold Time 4351 and 4352 | tH | C _L = 50pF | 0 | 2 | 5 | - | - | 5 | - | 5 | - | ns | | Sn to LE | | | 0 | 4.5 | 5 | - | - | 5 | - | 5 | - | ns | | | | | 0 | 6 | 5 | - | - | 5 | - | 5 | - | ns | | | | | -4.5 | 4.5 | 5 | - | - | 5 | - | 5 | - | ns | | Pulse Width 4351 and 4352 | t _W | C _L = 50pF | 0 | 2 | 100 | - | - | 125 | - | 150 | - | ns | | <u>LE</u> | | | 0 | 4.5 | 20 | - | - | 25 | - | 30 | - | ns | | | | | 0 | 6 | 17 | - | - | 21 | - | 26 | - | ns | | | | | -4.5 | 4.5 | 25 | - | - | 31 | - | 38 | - | ns | | Input (Control) Capacitance | C _I | - | - | - | - | - | 10 | - | 10 | - | 10 | pF | | Power Dissipation Capacitance (Notes 6, 7) 4351 | C _{PD} | - | - | 5 | - | 50 | - | - | - | - | - | pF | # Switching Specifications Input t_r , $t_f = 6ns$ (Continued) | | | TEST | V _{EE} | V _{CC} | | 25°C | | | C TO
°C | -55°C TO
125°C | | | |--|-------------------------------------|-----------------------|-----------------|-----------------|-----|------|-----|-----|------------|-------------------|-----|-------| | PARAMETER | SYMBOL | CONDITIONS | (V) | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | Power Dissipation Capacitance
(Notes 6, 7) 4352 | C _{PD} | - | - | 5 | - | 74 | - | - | - | - | - | pF | | HCT TYPES | | • | | | | | | | | | | | | Propagation Delay, | t _{PLH} , t _{PHL} | C _L = 50pF | 0 | 4.5 | - | - | 7 | - | 9 | - | 11 | ns | | Switch In to Switch Out | | | -4.5 | 4.5 | - | - | 5 | - | 7 | - | 8 | ns | | Maximum Switch Turn "ON" | t _{PZH} , t _{PZL} | C _L = 50pF | 0 | 4.5 | - | - | 75 | - | 94 | - | 113 | ns | | Delay 4351
E1, E2, LE to VOS | | | -4.5 | 4.5 | - | - | 60 | - | 75 | - | 90 | ns | | | | C _L = 15pF | - | 5 | - | 35 | - | - | - | - | - | ns | | Maximum Switch Turn "ON" | t _{PZH} , t _{PZL} | C _L = 50pF | 0 | 4.5 | - | - | 75 | - | 94 | - | 113 | ns | | Delay 4351
Sn to V _{OS} | | | -4.5 | 4.5 | - | - | 60 | - | 75 | - | 90 | ns | | | | C _L = 15pF | - | 5 | - | 35 | - | - | - | - | - | ns | | Maximum Switch Turn "OFF" | t _{PHZ} , t _{PLZ} | C _L = 50pF | 0 | 4.5 | - | - | 55 | - | 69 | - | 83 | ns | | Delay 4351
E1 to V _{OS} | | | -4.5 | 4.5 | - | - | 40 | - | 50 | - | 60 | ns | | | | C _L = 15pF | - | 5 | - | 23 | - | - | - | - | - | ns | | Maximum Switch Turn "OFF" | t _{PHZ} , t _{PLZ} | C _L = 50pF | 0 | 4.5 | - | - | 60 | - | 75 | - | 90 | ns | | Delay 4351
E2 to V _{OS} | | | -4.5 | 4.5 | - | - | 50 | - | 63 | - | 75 | ns | | | | C _L = 15pF | - | 5 | - | 23 | - | - | - | - | - | ns | | Maximum Switch Turn "OFF"
Delay 4351 | t _{PHZ} , t _{PLZ} | C _L = 50pF | 0 | 4.5 | - | - | 60 | - | 75 | - | 90 | ns | | LE to V _{OS} | | | -4.5 | 4.5 | - | - | 55 | - | 69 | - | 83 | ns | | Maximum Switch Turn "OFF" | t _{PHZ} , t _{PLZ} | C _L = 50pF | 0 | 4.5 | - | - | 65 | - | 81 | - | 98 | ns | | Delay 4351
Sn to V _{OS} | | | -4.5 | 4.5 | - | - | 55 | - | 69 | - | 83 | ns | | | | C _L = 15pF | - | 5 | - | 23 | - | - | - | - | - | ns | | Setup Time 4351 | | C _L = 50pF | 0 | 4.5 | - | - | 12 | - | 15 | - | 18 | ns | | Sn to LE | | | -4.5 | 4.5 | - | - | 14 | - | 18 | - | 21 | ns | | Hold Time 4351 and 4352 | | C _L = 50pF | 0 | 4.5 | 5 | - | - | 5 | - | 5 | - | ns | | Sn to LE | | | -4.5 | 4.5 | 5 | - | - | 5 | - | 5 | - | ns | | Pulse Width 4351 | t _W | C _L = 50pF | 0 | 4.5 | 25 | - | - | 31 | - | 28 | - | ns | | LE | | | -4.5 | 4.5 | 25 | - | - | 31 | - | 38 | - | ns | | Input (Control) Capacitance | Cl | - | - | - | - | - | 10 | - | 10 | - | 10 | pF | | Power Dissipation Capacitance
(Notes 6, 7) 4351 | C _{PD} | - | - | 5 | - | 52 | - | - | - | - | - | pF | ^{6.} $C_{\mbox{PD}}$ is used to determine the dynamic power consumption, per package. ^{7.} $P_D = C_{PD} \ V_{CC}^2 \ f_i + \Sigma \ (C_L + C_S) \ V_{CC}^2 \ f_o$ where f_i = input frequency, f_o = output frequency, C_L = output load capacitance, C_S = switch capacitance, V_{CC} = supply voltage. # Analog Channel Specifications $T_A = 25^{\circ}C$ | PARAMETER | SYMBOL | TEST
CONDITIONS | TYPE | V _{EE} (V) | V _{CC} (V) | нс/нст | UNITS | |------------------------------------|------------------|--------------------|------|---------------------|---------------------|--------|-------| | Switch Input Capacitance | Cl | | All | - | - | 5 | pF | | Common Capacitance | ССОМ | | 4351 | - | - | 25 | pF | | | | | 4352 | - | - | 12 | pF | | Minimum Switch Frequency | f _{MAX} | See Figure 11 | 4351 | - | - | 145 | MHz | | Response at -3dB (Figure 6, 8) | | (Notes 8, 9) | 4352 | -2.25 | 2.25 | 165 | MHz | | (3 2) | | | 4351 | - | - | 180 | MHz | | | | | 4352 | -4.5 | 4.5 | 185 | MHz | | Crosstalk Between Any Two Switches | | See Figure 10 | 4351 | - | - | N/A | dB | | (Note 11) | | (Notes 9, 10) | 4352 | -2.25 | 2.25 | (TBE) | dB | | | | | 4351 | - | - | N/A | dB | | | | | 4352 | -4.5 | 4.5 | (TBE) | dB | | Sine-Wave Distortion | | See Figure 12 | All | -2.25 | 2.25 | 0.035 | % | | | | | All | -4.5 | 4.5 | 0.018 | % | | E or S to Switch Feedthrough Noise | | See Figure 13 | 4351 | - | - | - | mV | | | | (Notes 9, 10) | 4352 | -2.25 | 2.25 | (TBE) | mV | | | | | 4351 | - | - | - | mV | | | | | 4352 | -4.5 | 4.5 | (TBE) | mV | | Switch "OFF" Signal Feedthrough | | See Figure 14 | 4351 | - | - | -73 | dB | | (Figure 6, 8) | | (Notes 9, 10) | 4352 | -2.25 | 2.25 | -65 | dB | | | | | 4351 | - | - | -75 | dB | | | | | 4352 | -4.5 | 4.5 | -67 | dB | - 8. Adjust input voltage to obtain 0dBm at V_{OS} for, f_{in} = 1MHz. - 9. V_{IS} is centered at (V_{CC} V_{EE})/2. - 10. Adjust input for 0dBm. - 11. Not applicable for 'HC4351 and CD74HCT4351. # **Typical Performance Curves** FIGURE 5. CHANNEL ON BANDWIDTH ('HC4351, CD74HCT4351) FIGURE 6. CHANNEL OFF FEEDTHROUGH ('HC4351, CD74HCT4351) FIGURE 7. CHANNEL ON BANDWIDTH (CD74HC4352) FIGURE 8. CHANNEL OFF FEEDTHROUGH (CD74HC4352) # Typical Performance Curves (Continued) FIGURE 9. TYPICAL ON RESISTANCE vs INPUT SIGNAL VOLTAGE # **Analog Test Circuits** FIGURE 10. CROSSTALK BETWEEN TWO SWITCHES TEST CIRCUIT FIGURE 12. TOTAL HARMONIC DISTORTION TEST CIRCUIT # Analog Test Circuits (Continued) FIGURE 13. CONTROL-TO-SWITCH FEEDTHROUGH NOISE TEST CIRCUIT FIGURE 14. SWITCH OFF SIGNAL FEEDTHROUGH #### Test Circuits and Waveforms NOTE: Outputs should be switching from 10% V $_{CC}$ to 90% V $_{CC}$ in accordance with device truth table. For f $_{MAX}$, input duty cycle = 50%. FIGURE 15. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH FIGURE 17. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC FIGURE 19. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS NOTE: Outputs should be switching from 10% V $_{CC}$ to 90% V $_{CC}$ in accordance with device truth table. For f $_{MAX}$, input duty cycle = 50%. FIGURE 16. HCT CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH FIGURE 18. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC FIGURE 20. HCT SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS #### Test Circuits and Waveforms (Continued) 6ns 3V V_{CC} OUTPUT OUTPUT 90% **DISABLE** 50% DISABLE 10% 0.3 GND GND t_{PZL} → - t_{PLZ} → t_{PZL} ► t_{PLZ} → **OUTPUT LOW** OUTPUT LOW 50% TO OFF TO OFF 1.3V 10% 10% ◆ t_{PHZ} ◆ - t_{PZH} · t_{PHZ} → tpzh -90% 90% **OUTPUT HIGH OUTPUT HIGH** 50% TO OFF TO OFF 1.3V **OUTPUTS OUTPUTS OUTPUTS OUTPUTS OUTPUTS OUTPUTS ENABLED** ENABLED **DISABLED ENABLED** DISABLED **ENABLED** FIGURE 21. HC THREE-STATE PROPAGATION DELAY WAVEFORM FIGURE 22. HCT THREE-STATE PROPAGATION DELAY WAVEFORM NOTE: Open drain waveforms t_{PLZ} and t_{PZL} are the same as those for three-state shown on the left. The test circuit is Output $R_L = 1k\Omega$ to V_{CC} , $C_L = 50pF$. FIGURE 23. HC AND HCT THREE-STATE PROPAGATION DELAY TEST CIRCUIT #### PACKAGE OPTION ADDENDUM www.ti.com 15-Oct-2009 #### PACKAGING INFORMATION | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | e Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------| | CD54HC4351F3A | ACTIVE | CDIP | J | 20 | 1 | TBD | A42 | N / A for Pkg Type | | CD74HC4351E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | CD74HC4351EE4 | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | CD74HC4351M | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4351M96 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4351M96E4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4351M96G4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4351ME4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4351MG4 | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | CD74HC4352E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | CD74HC4352EE4 | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | CD74HCT4351E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | CD74HCT4351EE4 | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited # **PACKAGE OPTION ADDENDUM** www.ti.com 15-Oct-2009 information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # PACKAGE MATERIALS INFORMATION 14-Jul-2012 www.ti.com ### TAPE AND REEL INFORMATION #### **REEL DIMENSIONS** #### **TAPE DIMENSIONS** | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### TAPE AND REEL INFORMATION #### *All dimensions are nominal | Device | _ | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | CD74HC4351M96 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.0 | 2.7 | 12.0 | 24.0 | Q1 | www.ti.com 14-Jul-2012 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---------------|--------------|-----------------|------|------|-------------|------------|-------------| | CD74HC4351M96 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | #### 14 LEADS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. # N (R-PDIP-T**) # PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. DW (R-PDSO-G20) ### PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AC. DW (R-PDSO-G20) PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Refer to IPC7351 for alternate board design. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC—7525 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. | roducts | | Applications | |---------|--------------|--------------| | | ti aaaa/adia | A | Pr Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u> www.ti-rfid.com