

Contents

Page	Section	Title
3	1.	Introduction
3	1.1.	Features
5	1.2.	Abbreviations
6	1.3.	Block Diagram
7	2.	Packages and Pins
7	2.1.	Package Outline Dimensions
8	2.2.	Pin Assignment
8	2.3.	Pin Function Description (differing from CDC32xxG-C User Manual)
9	2.4.	External Components
11	3.	Electrical Characteristics
11	3.1.	Absolute Maximum Ratings
12	3.2.	Recommended Operating Conditions
13	3.3.	Characteristics
15	3.4.	Recommended Quartz Crystal Characteristics
17	4.	CPU and Clock System
19	5.	Memory and Special Function ROM (SFR) System
21	6.	Core Logic
21	6.1.	Control Word (CW)
23	7.	Hardware Options
23	7.1.	Functional Description
25	8.	Differences
26	9.	Data Sheet History

1. Introduction

Release Note: Revision bars indicate significant changes to the previous edition.

The device is a microcontroller for use in automotive applications. The on-chip CPU is an ARM[®] processor ARM7TDMITM with 32-bit data and address bus, which supports ThumbTM format instructions.

The chip contains timer/counters, interrupt controller, multi channel AD converter, stepper motor and LCD driver, CAN interfaces and PWM outputs and a crystal clock multiplying PLL.

This document provides MCM Flash hardware specific information. General information on operating the IC can be found in the document "CDC32xxG-C Hardware Manual and CDC3205G-C Data Sheet (1PD)".

1.1. Features

I

Table 1–1: CDC32xxG-C Family Feature List

	This Device:										
Item	CDC3205G-C EMU	CDC3207G-C MCM Flash	CDC3272G-C Mask ROM	CDC3231G-C Mask ROM							
Core											
CPU	32-bit ARM7TDM	II TM									
CPU-Active Operation Modes	DEEP SLOW, SL	OW, FAST and PLL									
Power Saving Modes (CPU Inactive)	IDLE, WAKE and	STANDBY									
CPU clock multiplication	PLL delivering up to 50MHz										
EMI Reduction Mode	selectable in PLL mode										
Oscillators	4 to 5MHz Quartz	z and 20 to 50kHz Ir	ternal RC								
RAM, zero wait state, 32 bit wide	32kByte		16kByte	6kByte							
ROM	ROMIess, ext. up to 4M x 32/ 8M x 16, int. 8-KByte Boot ROM512-kByte F (256K x 16) boot conf., int. 8-KByte Boot ROM										
Digital Watchdog	V										
Central Clock Divider	~										
Interrupt Controller expanding IRQ	40 inputs, 16 prio	rity levels		26 inputs, 16 priority levels							
Port Interrupts including Slope Selection	6 inputs			5 inputs							
Port Wake-Up Inputs including Slope / Level Selection	10 inputs										
Patch Module	10 ROM locations	S									
Boot System	allows in-system external code to I JTAG	downloading of Flash memory via	-								
Device Lock Module	Inhibits Access to Lock settable by	internal Firmware, Customer	-								

This Device:

Table 1-1: CDC32xxG-C Family Feature List, continued

Item	CDC3205G-C EMU	CDC3207G-C MCM Flash	CDC3272G-C Mask ROM	CDC3231G-C Mask ROM						
Analog										
Reset/Alarm	Combined Input	for Regulator Input S	Supervision							
Clock and Supply Supervision	~									
10-bit ADC, charge balance type	16 channels (ead	ch selectable as digi	tal input)							
ADC Reference	VREF Pin, P1.0	Pin, P1.1 Pin or VR	EFINT Internal Band	gap selectable						
Comparators	P06COMP with 1 WAITCOMP with	P06COMP with 1/2 AVDD reference, WAITCOMP with Internal Bandgap reference								
LCD	Internal processi	ng of all analog volta	ages for the LCD dri	ver						
Communication										
DMA	3 DMA Channels Bus interface, SF	s, one each for servi PI0 and SPI1	ng the Graphics	-						
UART	2: UART0 and U	ART1		UART0						
Synchronous Serial Peripheral Interfaces	2: SPI0 and SPI	I, DMA supported								
Full CAN modules V2.0B with 512-byte object RAM each (LCAN000E)	4: CAN0, CAN1,	CAN2 and CAN3	2: CAN0 and CAN1	1: CAN0						
DIGITbus	1 master module		•	-						
I ² C	2 master module	I2C0								
Graphics Bus Interface	8-bit data bus, D EPSON SED 15	MA supported, e.g. 60 LCD controller	for connection of	-						
Input & Output										
Universal Ports selectable as 4:1 mux LCD Segment/Backplane lines or Digital I/O Ports		3 LCD segment line: gurable as I/O or LC		up to 50 I/O c 46LCD seg- ment lines (=184 seg- ments)						
Universal Port Slew Rate	SW selectable									
Stepper Motor Control Modules with High- Current Ports	7 Modules, 32 dl/dt controlle	d ports		4 Modules 23 dl/dt con- trolled ports						
PWM Modules, each configurable as two 8- bit PWMs or one 16-bit PWM	14/5, PWM6/7,	5 Modules: PWM0/1, PWM2/3, PWM4/5, PWM6/7, PWM8/9								
Phase-Frequency Modulator	2: PFM0 and PF	-								
Audio Module with auto-decay	~									
SW selectable Clock outputs	2									

Table 1-1: CDC32xxG-C Family Feature List, continued

		This Device:								
Item	CDC3205G-C EMU	CDC3207G-C MCM Flash	CDC3272G-C Mask ROM	CDC3231G-C Mask ROM						
Polling / Flash Timer Output	1 High-Current Port output operable in Power Saving Modes									
Timers & Counters										
16-bit free running counters with Capture/ Compare modules	CCC0 with 4 CAF CCC1 with 2 CAF			CCC0 with 4 CAPCOM						
16-bit timers	1: TO									
8-bit timers	4: T1, T2, T3 and T4									
Real Time Clock, Delivering Hours, Minutes and Seconds	v									
Miscellaneous										
Scalable layout in CAN, RAM and ROM	-	~								
Various randomly selectable HW options	Set by copy from	user program stora	ge during system s	tart-up						
JTAG test interface	v	allows Flash programming	~							
On Chip Debug Aids	Embedded Trace Module, JTAG	JTAG								
Core Bond-Out	~	-								
Supply Voltage	3.5 to 5.5V (limite	ed I/O performance	below 4.5V)							
Case Temperature Range	0 to +70C	-40 to +105C								
Package										
Туре	Ceramic 257PGA	PMQFP128-2 0.5mm pitch								
Bonded Pins	256	128	126	111						

 ARM^{\circledast} and $Thumb^{\circledast}$ are the registered trademarks of ARM Limited. ARM7TDMI^{m} is the trademark of ARM Limited.

1.2. Abbreviations

I

ADC AM CAN CAPCOM CCC CPU DMA ERM ETM I2C LCD P06COMP	Analog-to-Digital Converter Audio Module Controller Area Network Module Capture/Compare Module Capture/Compare Counter Central Processing Unit Direct Memory Access Module EMI Reduction Mode Embedded Trace Module I ² C Interface Module Liquid Crystal Display Module P0.6 Alarm Comparator	SM SPI T UART WAITCOMP	Stepper Motor Control Module Serial Synchronous Peripheral Interface Timer Universal Asynchronous Receiver Transmitter Wait Comparator
P06COMP PWM	P0.6 Alarm Comparator Pulse Width Modulator Module		

1.3. Block Diagram

Fig. 1–1: CDC3207G-C block diagram

2. Packages and Pins

2.1. Package Outline Dimensions

PMQFP128-2: Plastic Metric Quad Flat Package, **128** leads, $14 \times 20 \times 2.7$ mm³ Ordering code: MF Weight approximately 1.81 g

2.2. Pin Assignment

		Functions		t Pin				Pin			Pin Func		
_CD	Port	Port	Basic e	No.				No.		Basic	Port	Port	LCD
lode	Special Out	Special In	Function							Function	Special In	Special Out	Mode
SEG3.1	CC1-OUT	CC1-IN / TMS	U3.1	116				115		U3.2	CC0-IN / TCK	CC0-OUT	SEG
SEG3.0	CC2-OUT	CC2-IN / TDI	U3.0	117			/	114		U3.3		CO0/TDO	SEG
			TEST2	118	\		/	113		U3.4	SPI0-CLK-IN	SPI0-CLK-OUT	SEG
					1		/						
			UVDD	119	1		/	112		U3.5	SPI0-D-IN	TO3	SEG
			UVSS	120	\	/		111		U3.6		SPI0-D-OUT	SEG
SEG2.6	DIGIT-OUT	DIGIT-IN	U2.6	121	,	. /		110		U3.7	SPI1-CLK-IN	SPI1-CLK-OUT	SEG
SEG2.5	CC1-OUT	UART0-RX	U2.5	122		\ /		109		U4.0	SPI1-D-IN	CC0-OUT	BP0
SEG2.4	UART0-TX	DIGIT-IN/CC1-IN	U2.4	123		\ /		108		U4.1	CC0-IN	SPI1-D-OUT	BP1
											000-111		
SEG2.3	CC2-OUT	UART1-RX	U2.3	124				107		U4.2		CAN0-TX	BP2
SEG2.2	UART1-TX	CC2-IN	U2.2	125				106		U4.3	CAN0-RX/WP5	TO2	BP3
SEG7.7	CO0		U7.7/GD7 1	,2 126				105	1,2	U8.0		CC4-OUT	SEG
SEG7.6	CO1			,2 127				104		U8.1		CC3-OUT	SEG
SEG7.5	LCK/PFM1					\ /				U8.2	LCD-CLK-IN	CAN3-TX	
				,2 128	_			103					SEG
SEG7.4	CC5-OUT	CC5-IN		,2 1	7	\ /				U8.3	CAN3-RX/WP9	LCD-CLK-OUT	SEG
			FVDD 1	,2 2	1	\ /		101	1,2	U8.4	LCD-SYNC-IN	CAN2-TX	SEG
			FVSS 1	,2 3				100	1,2	U8.5	CAN2-RX/PINT3/WP8	LCD-SYNC-OUT	SEG
SEG5.3	CC4-OUT	CC4-IN		1 4	1	\ /		99		U6.0		CAN1-TX	SEG
					1	\ /	1						
SEG5.2	SDA1	SDA1	U5.2/GD2	1 5	1	\ /	1	98		U6.1	CAN1-RX/WP7	GOEQ	SEG
SEG5.1	SCL1	SCL1	U5.1/GD1	1 6	1	\ /	1	97	1	U6.2		GWEQ	SEG
SEG5.0	PFM0		U5.0/GD0	1 7	1	\setminus /	1	96	1	P2.0		1	1
SEG2.1	SDA0	WP6/SDA0/CAN0-RX	U2.1	8	1	\ /	1	95		P2.1	1	1	+
	SCL0/CAN0-TX	SCLO		9	1	\ /	1			P0.0	CC4-IN	-	-
SEG2.0					1	V	1	94			CC4-IN		
SEG1.7	PFM0	WP0/PINT0	U1.7	10	1	ľ		93		P0.1			
SEG1.6	INTRES/CO0	PINT1	U1.6	11	1			92		P0.2			
SEG1.5	CO1/CO0Q	PINT2	U1.5	12	1	100 110 115 100		91		P0.3			
			TEST	13	ł	128 116 115 103		90	-	P0.4	+	1	-
					1	0 0	102				-		
		RE	SETQ/ALARMQ	14				89		P0.5			
			XTAL2	15				88		P0.6	P0.6 Comp.		
			XTAL1	16				87		P0.7			
			VSS	17				86		WAITH			
			VDD	18				85		WAIT			
SEG1.4	ITSTOUT/AM-OUT		U1.4	19				84		BVDD			
SEG1.3	MTO/AM-PWM	WP3	U1.3	20				83		AVSS			
SEG1.2	INTRES/T0-OUT	MTI/ITSTIN	U1.2	21				82		AVDD			
SEG1.1	T1-OUT		U1.1	22				81	-	VREFINT			
			-										
SEG1.0	T2-OUT		U1.0	23				80		VREF			
SEG0.7	T3-OUT	WP4	U0.7	24				79		P1.0	VREF0/WP1		
SEG0.6	CC3-OUT/T4-OUT	CC3-IN	U0.6	25	38		65	78		P1.1	VREF1/WP2		
SEG0.5	CC3-OUT	PINT4	U0.5	26	30	0	65	77		P1.2	PINT0		
SEG0.4	CO1	PINT5	U0.4	27	Ī	39 51 52 64		76		P1.3	PINT1		_
		PINTS											
SEG0.3	PWM0		U0.3	28	1	1 1		75		P1.4	PINT2		
SEG0.2	PWM1		U0.2	29		Λ '	1	74		P1.5	PINT3		
SEG0.1	PWM2		U0.1	30	1	/ \	1	73		P1.6	PINT4		
SEG0.0	PWM3		U0.0	31	1	/ \	1	72		P1.7	PINT5	+	+
JLG0.0					1	/ \	1					01400 /014/147	
	SME1+/PWM4	SME-COMP3		1 32	1	/ \	1	71		H0.0	SMG-COMP0	SMG2-/PWM7	
	SME1-/PWM6	SME-COMP2	H7.2	1 33	1	/ \	1	70		H0.1	SMG-COMP1	SMG2+/PWM5	
	SME2+/PWM8	SME-COMP1	H7.1	1 34	1	/ \	1	69	1	H0.2	SMG-COMP2	SMG1-/PWM3/POL	
	SME2-/PWM9	SME-COMP0		1 35	1	/ \	1	68		H0.3	SMG-COMP3	SMG1+/PWM1	1
	0	02 00000 0			1	/ \	1	67		HVSS3			1
					1	/ \	1						
				,2 37	1	/ \	1	66		HVDD3			
	PWM8		H6.3 1	,2 38	1	/ \	1	65	1,2	H1.0	SMF-COMP0	SMF2-	
	PWM9			,2 39	-	/ \		64		H1.1	SMF-COMP1	SMF2+	1
	PWM10			,2 40				63		H1.2	SMF-COMP2	SMF1-	+
						/							
	PWM11			,2 41		/		62	1,2	H1.3	SMF-COMP3	SMF1+	
	SMD1+	SMD-COMP3	H5.3	42		/		61		H2.0	SMC-COMP0	SMC2-	
	SMD1-	SMD-COMP2	H5.2	43		/		60		H2.1	SMC-COMP1	SMC2+	1
	0	2	HVDD0	44		/		59		HVSS1		1	1
						/							
			HVSS0	45		/		58		HVDD1			
	SMD2+	SMD-COMP1	H5.1	46	,	· \		57		H2.2	SMC-COMP2	SMC1-	
	SMD2-	SMD-COMP0		47		\		56		H2.3	SMC-COMP3	SMC1+	+
		SMA-COMP3					\				SMB-COMP0	SMB2-	+
	SMA1+		H4.3	48	1.		\	55		H3.0			
	SMA1-	SMA-COMP2	H4.2	49	/	NC = not connected,	1	54	1 1	H3.1	SMB-COMP1	SMB2+	
	SMA2+	SMA-COMP1	H4.1	50	/ 1	eave vacant	\	53		H3.2	SMB-COMP2	SMB1-	1
							1						
	SMA2-	SMA-COMP0	H4.0	51) = future usage	1	52		H3.3	SMB-COMP3	SMB1+	

Fig. 2–1: Pin Assignment for PQFP128 Package Note 1 denotes pins that are not available in future 88 pin versions. Note 2 denotes pins that are not available in future 104 pin versions.

2.3. Pin Function Description (differing from CDC32xxG-C User Manual)

TEST2

For normal operation with internal code connect TEST2 to System Ground (no internal pull-down).

2.4. External Components

Fig. 2–2: CDC3207G-C: Recommended external supply and quartz connection.

To provide effective decoupling and to improve EMC behaviour, the small decoupling capacitors must be located as close to the supply pins as possible. The self-inductance of these capacitors and the parasitic inductance and capacitance of the interconnecting traces determine the self-resonant frequency of the decoupling network. Too low a frequency will reduce decoupling effectiveness, will increase RF emissions and may adversely affect device operation.

XTAL1 and XTAL2 quartz connections are especially sensitive to capacitive coupling from other pc board signals. It is strongly recommended to place quartz and oscillation capacitors as close to the pins as possible and to shield the XTAL1 and XTAL2 traces from other signals by embedding them in a VSS trace.

The RESETQ pin adjacent to XTAL2 should be supplied with a 47nF capacitor, to prevent fast RESETQ transients from being coupled into XTAL2, to prevent XTAL2 from coupling into RESETQ, and to guarantee a time constant of \geq 200µs sufficient for proper Wake Reset functionality.

3. Electrical Characteristics

3.1. Absolute Maximum Ratings

Stresses beyond those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these conditions is not implied. Exposure to absolute maximum ratings conditions for extended periods will affect device reliability.

This device contains circuitry to protect the inputs and outputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than absolute maximum-rated voltages to this high-impedance circuit.

Table 3–1: All voltages listed are referenced to ground ($UV_{SS}=HV_{SSn}=AV_{SS}=0V$), except where noted. All grounds except VSS must be connected externally low-ohmic.

Symbol	Parameter	Pin Name	Min.	Max.	Unit
V _{SUP}	Main Supply Voltage Analog Supply Voltage SM Supply Voltage	UVDD AVDD HVDD0 HVDD3	-0.3	6.0	V
V _{REG}	Flash Supply Voltage	FVDD	-0.3	4.0	V
	Core Supply Voltage PLL Supply Voltage	VDD BVDD	-0.3	3.0	V
I _{SUP}	Core Supply Current Main Supply Current	VDD, VSS, UVDD, UVSS	-100	100	mA
	Analog Supply Current	AVDD, AVSS	-20	20	mA
	SM Supply Current @T _{CASE} =105C, Duty Factor=0.71 ¹)	HVDD0 HVDD3 HVSS0 HVSS3	-250	250	mA
	Flash Supply Current	FVDD, FVSS	-50	50	mA
	PLL Supply Current	BVDD	-20	20	mA
V _{in}	Input Voltage	U-Ports, XTAL,RESETQ, TEST, TEST2	UV _{SS} -0.5	UV _{DD} +0.7	V
		P-Ports VREF	UV _{SS} -0.5	AV _{DD} +0.7	V
		H-Ports	HV _{SS} -0.5	HV _{DD} +0.7	V
l _{in}	Input Current	all Inputs	0	2	mA
۱ _o	Output Current	U-Ports, RESETQ, WAITH	-5	5	mA
		H-Ports	-60	60	mA
t _{oshsl}	Duration of Short Circuit to UVSS or UVDD, Port SLOW Mode enabled	U-Ports, except in DP Mode		indefinite	S
Тj	Junction Temperature under Bias		-45	115	°C
T _s	Storage Temperature		-45	125	°C
P _{max}	Maximum Power Dissipation			0.8	W

¹) This condition represents the worst case load with regard to the intended application

3.2. Recommended Operating Conditions

Do not insert the device into a live socket. Instead, apply power by switching on the external power supply.

Keep UV_{DD} =AV_{DD} during all power-up and power-down sequences.

Failure to comply with the above recommendations will result in unpredictable behavior of the device and may result in device destruction.

Functional operation of the device beyond those indicated in the "Recommended Operating Conditions" of this specification is not implied, may result in unpredictable behaviour of the device and may reduce reliability and lifetime.

Table 3-2:All voltages listed are referenced to ground ($UV_{SS}=HV_{SSn}=AV_{SS}=0V$), except where noted. All grounds except VSSmust be connected externally low-ohmic.

Symbol	Parameter	Pin Name	Min.	Тур	Max.	Unit				
V _{SUP}	Main Supply Voltage Analog Supply Voltage	UVDD=AVDD	3.5	5	5.5	V				
HV _{SUP}	SM Supply Voltage	HVDDn	4.75	5	5.25	V				
dV _{DD}	Ripple, Peak to Peak	UVDD AVDD BVDD FVDD VDD			200	mV				
dV _{DD} /dt	Supply Voltage Up/Down Ramping Rate	UVDD AVDD			20	V/µs				
f _{XTAL}	XTAL Clock Frequency	XTAL1	4	4	5	MHz				
f _{SYS}	CPU Clock Frequency, PLL on			available se	ttings see Tables	4–1 and				
f _{BUS}	Program Storage Clock Fre- quency, PLL on		4–2.							
V _{il} (see Table 2-2 for a list of input	Automotive Low Input Voltage	U-Ports H-Ports P-Ports			0.5*xV _{DD}	V				
types and their supply volt- ages)	CMOS Low Input Voltage	U-Ports, TEST, TEST2 H-Ports P-Ports			0.3*xV _{DD}	V				
V _{ih} (see Table 2-2 for a list of input	Automotive High Input Voltage	U-Ports H-Ports P-Ports	0.86*xV _{DD}			V				
types and their supply volt- ages)	CMOS High Input Voltage	U-Ports,TEST, TEST2 H-Ports P-Ports	0.7*xV _{DD}			V				
RV _{il}	Reset Active Input Voltage	RESETQ			0.75	V				
WRV _{il}	Reset Active Input Voltage during Power Saving Modes and Wake Reset	RESETQ			0.4	V				
RV _{im}	Reset Inactive and Alarm Active Input Voltage	RESETQ	1.5		2.3	V				
RV _{ih}	Reset Inactive and Alarm Inactive Input Voltage	RESETQ	3.2			V				

Symbol Parameter Pin Name Min. Тур Max. Unit Reset Inactive Input Voltage dur-RESETQ v WRV_{ih} UV_{DD}-0.4V ing Power Saving Modes and Wake Reset V_{REFi} Ext. ADC Reference Input Voltage VREF 2.56 V AVDD PV_i V_{REFi} V ADC Port Input Voltage referenced P-Ports 0 to int. VREF Reference ADC Port Input Voltage referenced 0 V_{REFINT} to ext. VREFINT Reference

Table 3–2: All voltages listed are referenced to ground ($UV_{SS}=HV_{SSn}=AV_{SS}=0V$), except where noted. All grounds except VSSmust be connected externally low-ohmic.

3.3. Characteristics

Listed are only those characteristics that are differing from Chapter 3.3 of Document "CDC32xxG-C, Automotive Controller Family User Manual, CDC3205G-C Automotive Controller" (1PD). All not differing characteristics, that are not listed here, apply, but in a T_{CASE} temperature range extended to -40 to +105C

Table 3–3: $UV_{SS}=FV_{SS}=HV_{SSn}=AV_{SS}=0V$, 3.5V<AV_{DD}= UV_{DD} <5.5V, 4.75V<HV_{DDn}<5.25V, T_{CASE}=-40 to +105C, f_{XTAL}=5MHz, external components according to Fig. 2–3 (unless otherwise noted)

Symbol	Parameter	Pin Na.	Min.	Typ ¹⁾	Max.	Unit	Test Conditions
Package						1	
R _{thjc}	Thermal Resistance from Junction to Case			25		C/W	measured on Micronas typical 2-layer board,
R _{thja}	Thermal Resistance from Junction to Ambient		60			C/W	 1s1p, described in document "Integrated Circuits Thermal Characterization of Packages" (6200 266-1E) (modified JESD-51.3)
Supply Cu	rrents (CMOS levels on all inpu	ts, i.e. V _{il} =x\	/ _{SS} ±0.3V a	and V _{ih} =xV	_{DD} ±0.3V,	no loads o	n outputs)
UI _{DDp}					50	mA	Flash Read, f _{SYS} =24MHz
UI _{DDprog}	VDD Flash Program Supply Current	UVDD			45	mA	Flash Write/Erase, all Modules OFF, ²)
UI _{DDf}	UVDD FAST Mode Supply Current	UVDD			22	mA	all Modules OFF, ²)
UI _{DDs}	UVDD SLOW Mode Supply Current	UVDD		see Fig. 3– 1	1.4	mA	all Modules OFF ²) ³)
UI _{DDd}	UI _{DDd} UVDD DEEP SLOW Mode Supply Current			see Fig. 3– 1	0.9	mA	all Modules OFF ³)
UI _{DDw} UVDD WAKE Mode Supply Current		UVDD	0	20	50	μA	RC and XTAL oscilla- tors OFF

Micronas

Symbol	Parameter	Pin Na.	Min.	Typ ¹⁾	Max.	Unit	Test Conditions
UI _{DDst}	UVDD STANDBY Mode Supply Current	UVDD		35	75	μΑ	RC oscillator ON, XTA OFF
		UVDD		60	100	μA	XTAL oscillator ON, R OFF ³)
UI _{DDi}	UVDD IDLE Mode Supply Current	UVDD		50	TBD	μA	RC oscillator ON, XTA OFF
				75	TBD	μA	XTAL oscillator ON, R(OFF ³)
Al _{DDa}	AVDD Active Supply Cur-	AVDD		0.35	0.6	mA	ADC ON, PLL OFF
	rent			1	2	mA	ADC and PLL ON, f _{SYS} =24MHz
AI _{DDq}	Quiescent Supply Current	AVDD	0	1	10	μΑ	SLOW, DEEP SLOW and power saving modes, ADC and PLL OFF
HI _{DDq}		Sum of all HVDDn	0	1	40	μΑ	no Output Activity, SM Module OFF
Inputs				÷			
li	Input Leakage Current	TEST2	-1		1	μA	0 <vi<uv<sub>DD</vi<uv<sub>

Table 3-3: $UV_{SS}=FV_{SS}=HV_{SSn}=AV_{SS}=0V$ $3.5V < AV_{DD}=UV_{DD} < 5.5V$ $4.75V < HV_{DDn} < 5.25V$ $T_{CASE}=-40$ to +105C, $f_{XTAL}=5MHz$ external components according to Fig. 2-3 (unless otherwise noted)

²) Value may be exceeded with unusual Hardware Option setting

³) Measured with external clock. Add typically 120µA for operation on quartz with SR0.XTAL=0 (Oscillator RUN mode).

Fig. 3–1: Typical UI_{DD} characteristics over temperature @ f_{XTAL} =4MHz, 5V

3.4. Recommended Quartz Crystal Characteristics

See Chapter 3.4 of document "CDC32xxG-C, Automotive Controller Hardware Manual, CDC3205G-C EMU Data Sheet (1PD)".

4. CPU and Clock System

4.1. Recommended Register Settings

Other settings for PMF, IOP and WSR than those given in Tables 4–1 and 4–2 shall not be used and may result in undefined behaviour. It is required not to operate I/O faster than Flash.

Suppression Strength (SUP) and Clock Tolerance (TOL) may be varied between zero and the values for strong settings according to the rules in Section 4.4.2 of the CDC32xxG-C Hardware Manual. The given limits must not be exceeded

Table 4-1: PLL and ERM Modes: Recommended Set	ttings and Resulting Operating Frequencies (MHz)
---	--

f _{XTAL}	CPU Flash				I/O		ERMC.EOM = 1							ERMC.EOM = 2 or 3				
							We	Weak Normal		Str	ong	Weak		Normal		Strong		
	f _{SYS}	PLLC. PMF	f _{BUS}	WSR	f _{IO} = f ₀	IOC. IOP	SUP	TOL	SUP	TOL	SUP	TOL	SUP	TOL	SUP	TOL	SUP	TOL
4	8	1	8	0x00	8	0	0	4	0	7	0	11	4	2	7	4	11	6
	16	3	8	0x11	8	1	0	8	0	14	0	15	8	4	14	7	22	11
	24	5	8	0x22	8	2	0	12	0	15	0	15	12	6	21	11	31	12
			12	0x11			0	10	0	10	0	10	12	2	21	2	33	2
	32	7	8	0x33	8	3	0	12	0	12	0	12	16	8	28	12	31	12
			10.67	0x22			0	12	0	12	0	12	16	8	19 23 28	9 7 6	19 23 37	9 7 6
	40	9	10	0x33	8	4	0	6	0	6	0	6	21	6	35	6	37	6
	48	11	12	0x33	8	5	0	1	0	1	0	1	25	1	42	1	42	1
5	10	1	10	0x00	10	0	0	5	0	8	0	14	5	3	8	4	14	7
	20	3	10	0x11	10	1	0	10	0	15	0	15	10	5	17	8	28	8
	30	5	10	0x22	10	2	0	14	0	14	0	14	15	8	24 26	12 11	28 30 35	10 9 8
	40	7	10	0x33	10	3	0	6	0	6	0	6	21	6	35	6	37	6
	50	9	12.5	0x33	10	4		set	ERM	C.EO	M=0			set	ERM	C.EO	M=0	

 Table 4–2:
 PLL2 and ERM Modes: Settings Sacrificing Unlimited Operation of Peripheral Modules and Resulting Operating

 Frequencies (MHz)
 Frequencies (MHz)

f _{XTAL}	CPU Flash		I/O	ERMC.EOM = 1				ERMC.EOM = 2 or 3										
							Weak		Normal		Strong		Weak		Normal		Strong	
	f _{SYS}	PLLC. PMF	f _{BUS}	WSR	f _{IO} = f ₀	IOC. IOP	SUP	TOL	SUP	TOL	SUP	TOL	SUP	TOL	SUP	TOL	SUP	TOL
4	12	2	6	0x11	4	2	0	6	0	10	0	15	6	3	10	5	16	8
			12	0x00			0	5	0	5	0	5	6	2	10	2	16	2
	20	4	10	0x11	4	4	0	10	0	15	0	15	10	5	17	8	28	8
5	15	2	7.5	0x11	5	2	0	7	0	13	0	15	7	4	13	7	21	11

5. Memory and Special Function ROM (SFR) System

Fig. 5-1: Address Map. Most Common Settings

6. Core Logic

6.1. Control Word (CW)

A number of important system configuration properties are selectable during device start-up by means of a unique Control Word (CW).

6.1.1. Reset Active

At the end of the reset period, the device fetches this CW from address locations 0x20 to 0x23 of a source that is determined by the state of pins TEST and TEST2 and flag MFPLR.MFPL, see Table 6–1 for MCM parts, Table 6–2 for ROM parts.

Table 6–1: CW fetch in MCM parts (QFP128)

Control Word Fetch desired from	Necessary Reset con- figuration					
	TEST2	TEST	MFPL			
Int. Flash	0	0	x			
Int. Flash	0	1	1			
Ext. via Multi Function port			0 ¹⁾			
Int. Special Function ROM	1	х	х			
¹⁾ Only available after a non-Power-On RESET with MFPL = 0 set before						

As can be seen from Table 6–1, the device disables external access (through the Multi Function port) to internal code, as long as MFPLR.MFPL is 1 (= state after UVDD power-up). Setting it to 0 requires internal SW. By this means, an effective device lock mechanism is implemented, that prevents unauthorized access to internal SW.

In ROM parts, flag MFPLR.MFPL is available, but does not lock the Multi Function port. Thus Table 6–1 reduces to Table 6–2.

Control Word Fetch desired from	Necessary Reset config. of pins				
	TEST2	TEST			
Internal ROM	0	0			
External via Multi Function port	0	1			
Int. Special Function ROM	1	x			

Table 6–2: CW fetch in ROM parts (QFP128)

6.1.2. Reset Inactive

When exiting Reset, the CW is read and stored in the Control Register (CR) and the system will start up according to the configuration defined therein.

Normally the CW is fetched from the same memory that the system will start executing code from. Table 6–3 gives fix CWs for a list of the most commonly used configurations.

Table 6–3: Some common system configurations and the corresponding CW setting

Part	Program Start desired from	Additional desired properties	Necessary CW		
Туре			31:16	15:0	
MCM	int. 16-Bit Flash (Am29LV400BT)	-	Don't care	0x7F5F	
ROM	int. 16-Bit ROM	-	Don't care	0x7F5F	

7. Hardware Options

7.1. Functional Description

Hardware Options are available in several areas to adapt the IC function to the host system requirements. For details see the CDC32xxG-C Hardware Manual.

Hardware Option setting requires two steps:

1. selection is done by programming dedicated address locations in the HW Options field with the desired options' code.

2. activation is done by copying the HW Options field to the corresponding HW Options registers at least once after each reset.

In EMU and MCM devices all HW Options are SW progammable.

In mask ROM derivatives the clock options and the Watchdog, Clock and Supply Monitors are hard wired according to the HW Options field of the ROM code hex file. Those options can only be altered by changing a production mask.

To ensure compatible option settings in this IC and mask ROM derivatives when run with the same ROM code, it is mandatory to always write the HW Options field to the HW option registers directly after reset.

8. Differences

This chapter describes differences of this document to predecessor document "CDC3207G-C CDC3205G-C Automotive Controller Specification" (6251-589-3AI)

Section	Description
1. Introduction	Editorial corrections.
	Figure 1-1: changed.
2. Pins and Packages	Editorial corrections.
	Figure 2-1: changed.
3. Electrical Characteristics	Absolute Maximum Ratings: Revised introduction.
	Recommended Operating Conditions: Revised introduction.
	Characteristics: Changed definition: Table 3-3 footnote 3, Values added: Al _{DDq} , Hl _{DDq} Added conditions: R _{thjc} , R _{thja} ,

9. Data Sheet History

1. Advance Information: "CDC3207G-C V1.0 Automotive Controller Specification", 21 FEB 02, 6251-589-1AI. First release of the advance information.

Originally created for HW version CDC3207G-C1.

2. Advance Information: "CDC3207G-C V2.0 Automotive Controller Specification", June 6, 2003, 6251-589-2AI.
Second release of the advance information.
Originally created for HW version CDC3207G-C2.

3. Advance Information: "CDC3207G-C Automotive Controller Specification", April 15, 2003, 6251-589-3AI. Third release of the advance information. Originally created for HW version CDC3207G-C3.

4. Preliminary Data Sheet: "CDC3207G-C Automotive Controller Specification", June 12, 2003, 6251-589-1PD.
First release of the preliminary data sheet.
Originally created for HW version CDC3207G-C3.

Micronas GmbH Hans-Bunte-Strasse 19 D-79108 Freiburg (Germany) P.O. Box 840 D-79008 Freiburg (Germany) Tel. +49-761-517-0 Fax +49-761-517-2174 E-mail: docservice@micronas.com Internet: www.micronas.com

Printed in Germany Order No. 6251-589-1PD All information and data contained in this data sheet are without any commitment, are not to be considered as an offer for conclusion of a contract, nor shall they be construed as to create any liability. Any new issue of this data sheet invalidates previous issues. Product availability and delivery are exclusively subject to our respective order confirmation form; the same applies to orders based on development samples delivered. By this publication, Micronas GmbH does not assume responsibility for patent infringements or other rights of third parties which may result from its use.

Further, Micronas GmbH reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of Micronas GmbH.