Using Micro Concurrent Pascal in RCA Development Systems

with the CDP1804P1 and CDM5332P1

By David C, Stanley

Micro Concurrent Pascal (mCP)*is designed for writing real-time computer
control applications and 1is best suited for real-time executions that
require multitasking‘ operating systems. MCP allows the programmer to
construct interrupt driven tasks that can share data, communicate
information, and be synchronized for execution. RCA has developed a 2-chip
set (CDP1804P1 and CDM5332P1) which contains a pseudo-code (p-code)
interpreter and facilitates use of mCP in end use systems. This article

describes mCP, the RCA chip set, and how to generate mCP code.

MCP FEATURES

A task 1is called a "process" in mCP. Processes are independent programs
that run concurrently by sharing control of the microrocessor. Routines
- and the data shared between them are placed in a data structure called a
"monitor". Processes access shared data only through monitors that enforce
exclusive use of data (allow only one process at a time to use it).

"Device monitors"™ allow processes to access shared devices.

COMPILER and INTERPRETER

The mCP compiler written by Enertec Inc., resides on Compuserveg' The

ind info. user's manual for mCPj) may be aquired from RCA Systems Marketing JsuElER
n Compyserve
EETTEA RN An mCP program may be

generated with an RCA development system editor (CDS or MCDS) and up-loaded

to Compuserve for compilation. The Pascal file may also be generated with

5kMicro Concurrent Pascal and mCP are registered tradenames of Enertec,

Inc., Lansdale, PA.

Compuserve's FILGE (FILe GEnerator) editor and compiled. The mCP compiler
outputs the p-code application program that 1is down-loaded to the CDP1804P{
microcomputer system and executed by the interpreter/kernel. This
interpreter is divided into two sections.

The first section (core) resides in the 2K ROM of the CDP1804P1 and is
independent of the second section. The core section of the interpreter
permits execution of a restricted subset of mCP language (see table 1).
The restrictions on the language are concurrency, set operations and SET
data types, bit manipulation and string move subroutines, and REAL
(floating-point) data types. This subset of mCP ("micro Pascal") is
compatible with sequential Pascal defined in Jensen and Wirth's: PASCAL
User Manual and Report? A memory map for the core interpreter system is
shown 1in appendix A, A user generated branch/parameter table located on
page 0 must contain address pointers for the start of the p-code program
and boundries of a contiguous RAM memory space for interpreter working
storage (see appendix A). The 64 byte on-chip RAM of the CDP1804P1 can be
used for this working storage only with the core interpreter. Immediately
following the branch/parameter table should be a list of the built-in
machine language subroutines for the CDP1804P1 (see appendix B). Users may
write their own subroutines by extending the 1list wup to a total of 128
routine addresses, Programmers must write their own interrupt routines or
poll .I/O ports for devices that do not generate interrupts. This 1is
accomplished by uéing Pascal functions and procedures INN, OUT, PEEK, and
POKE. Appendix C describes interrupt handling 1including CDP1804A
Timer/counter interrupts.

The second section (extension) of the interpreter is designed to work

with ©the core and extends support to the complete mCP language. Table 2

shows the additional language features of the extension ROM. A memory map

TABLE 1

CDP1804PLMICRO CONCURRENT PASCAL

WORD SYMBOLS

AND ARRAY
DIV DO
EXTERNAL FOR
OF OR

TO TYPE
WITH XOR

STANDARD FUNCTIONS

ABS ADDR
MAXINT ORD

STANDARD PROCEDURES

DEC INC

STANDARD DATA TYPES

ADDRESS BOOLEAN

CORE LANGUAGE

BEGIN
DOWNTO
FUNCTION
PROCEDURE
UNIV

ADR
PEEK

ouT

CHAR

CASE CONST
ELSE END
IF MOD

RECORD REPEAT
UNTIL VAR

CHR INN
PRED SuccC
POKE

INTEGER

CYCLE
ENTRY
NOT
THEN
WHILE

TABLE 2

CDP1804PIMICRO CONCURRENT PASCAL

EXTENSION LANGUAGE (4K ROM)

WORD SYMBOLS

CLASS " DEVICE_MON DOIO IN INIT
MONITOR PROCESS SET STRUC_CON

STANDARD FUNCTIONS

CONYV EMPTY STR_STOP TRUNC WORD

STANDARD PROCEDURES

CONTINUE DELAY DIDDLE INITQUEUE STR_COUNT

STANDARD TYPES

QUEUE REAL

of the extended interpreter system is sﬁown in appendix A, The extension
ROM replaces the branch/parameter table used by the core interpreter and
sets up its own table identical in layout for 1linkage with the core. This
table contains a page pointer to an address table for p-code subroutines.
The user' must generate a branch/parameter table starting at page 10
hexadecimal 1in same manner as with the core (see appendix A). Figure 1

shows a typical CDP1804P1 mCP system with the CDM5332P1 extension ROM.

CbS
To up-load and down-load Pascal programs from Compuserve, the CDS Micro NET
Exective program is needed. This program is available in the RCA User
Group and may be booted to a CDS system disk using the boot 1load program
described 1in the Compuserve Manual. A modeﬁ is required. The CDS IV
(18S008) connects to the modem through the connector on the back of the
system. The CDS III (185007) needs an 18S641 UART board and a modified
18S516 cable to connect to the modem. This modification consists of
reversing pins 2 and 3 of the 10 pin connector on the 641 UART board. The
modem 1is set to full duplex and originate mode. The 641 UART board 1is
placed in an I/0 slot with the N 1lines wired to it. Appendix D shows an
example of the up-load and down-load sequence,

To use the CDP1804P1 in the CDS IV and CDS III, the CDP18S605 (CDS IV)

and the CDP18S102V1 (CDS III) CPU boards must be modified by inverting the

WAIT and CLEAR lines and switching them (ie. WAIT to pin 3 and CLEAR to pin
2 of the CPU) and disconnecting pin 16 (ME/EMS) and letting it float. The
CDM5332P1 extension interpreter may be copied onto disk using an altered
CDP185S480 PROM programmer boardﬁ-This alteration consists of adding switch
to pin 21 of socket XU3 (see figure 2). The 5332P1 can then be placed in

socket XU3 and read as two 2716's., The first 2K of the interpreter can be

ADDRESS BUS

I i maek X
MAD- s L s
MAT N Yy
MwR > Cea——b| s 3
M—R_ﬁ > E_Stl _) > "_\E
TPA _ w]-B-»OE K [—B OF =<
7 _J: CE Qi?\ \\\ AB-AVL X AB-AID
BUs :
/ [N b
DATA/ BVS /

Z

CDM5332P |COMb\)b

CDPIBROHPL CDPIRB] :J
ERll K RoM 2K RAM

MPU L ATc H/DECOD

Figure 1-1804PL mCP system

+i2v=8 Vee-$
2 Mmoo, s . "

. 24 LNVV-'—NW—GQ—!‘FOCWE-P RIT
ar-p > 5 Vee S
AG-P 5 A8-? cRa / PROG
AS =P —— 2 499 wOMI~p cr? 7 B
A4=-P) -5 v=-$ RIO o " CR3
43-P - ‘oz : e 2708CS-P ROM2~P ———Ppi—
A2-p 12v=-§
Al =P 2704/2708 1 , PR - | e o
AQ-P 07-e
C o 1o
Ot = e T 0s-p
02-P F: | 04-p ’3

‘L 03-¢ p—AAA=— Ve
2 | 1 14
.\1 i.@‘-—nouz-a
SEL-P
lns
T < 1. Si (SHOWN IN 1842 POSITION)
EF1=N (P1~i7) =i UB —L__\: . |
- --k-—ex? ~ov(J2)
+PROG
PWR

) 24 1
A2=P] Sy —
PYpErg—| 3 ::_: 2
Y- 2_J 3
00-# L5 43-P cre :43-: s
0i-p Ad-p A3=P
020 XUl as-e Vee-$S A2-p Xu3
03-p 4 1642/1702 18 __ Lq.p c« Al-p 2T18/27%8
Da-p) 20-P 81
08-p) 16 00-p 3
06-¢ 10} S vee-$ 0]

1 14 cC ot-p -
07-p 1842CS~N 02-p
- 1893 mwR 2 2) i
ee {84 2MWR~N 3 12 =032 92¢CL - 31000

ROMI-P

FigZ‘ Proqvamvmng log)iC ot PROM
Progmmmew mod ule

copied into locations 0800 - 1000 with the switch at Vss. The second 2K 1is
copied into locations 1000 - 17FF with the switch at Vdd (collector of
transistor Ql). The PROM board may also be used as normal with the switch
in this position. Once the interpreter 1is loaded to disk (using save
command), it may be loaded into RAM at 1location 0000 for program
development. Once development is complete, the CDM5332P1 can be used for

prototype hardware.

MCDS

The 185601 CPU board must be modified for the CDP1804P1 (see appendix E).
The following links must be altered:

1. Remove links 4:13 and 2:15 of LK36

2. Add links 3:14 and 1:16 of LK36

3. Remove link A:B of LK37

The extension ROM must be located at 0000 - OFFF and RAM must immediately
follow for the branch/parameter table (see appendix F). The following must
be done:

1. Add link 6:11 and 1:16 of LKI11

2, Add link 5:12 and 1:16 of LK10

3. Remove link 1:18 of LK4

4, Disconnect pin 2 of U28 from

Al1-P and connect to + 5V

5. Connect All-P to pin 21 of U24

With this set-up, the editor and assembler cannot be used because RAM 1is
needed at location 0000 for their operation. The FILGE editor on Compuserve

may be used or the MCDS editor may be used by replacing the hardwire links

with DIP switches at LK10 and LK1l. Then when using the editor, switch RAM
to location 0000 (LK1l - 5:12) and the extension ROM to location 1000
(LK10 - 6:11). When ready to interpret a p-code program, switch them back
(LK11 - 6:11; LK10 - 5:12). Another option is to purchase a second
CDP18S601 board and modify it for use with mCP. The Pascal program can be
edited with the MCDS 601 board and replaced with the mCP 601 board for
p-code interpretation. The extension ROM 1is the 4K CDP5332P1 and is placed
in socket U24 of the 185601 board.

The MCDS Micro NET Executive is needed to wup-load and down-load
Pascal programs and is also available on Compuserve. The program may be
booted into the MCDS system and burned into a 2716 EPROM which is placed in
socket Ul3 (location E000) of the CDP18S652 Tape I/0 and Memory board. The
ROM in socket U3 must be removed because it is mapped at C000 (since this
ROM is part of BASIC 3, BASIC cannot be wused). The MCDS communicates with
the modem with the same hardware as the CDS III (18S007). The CDP18S641
UART board plugs right into any open socket. An example of the up-load and

down-load sequence is shown in appendix G.

»

SummarX

Real-time mCP application programs can be developed on MCDS and CDS
development systems. A version of sequential Pascal (micro Pascal) is also
available when using only the CDP1804P1l. Both mCP and micro Pascal can be
compiled wusing the mCP compiler residing on Compuserve. These programs are
up-loaded into Compuserve for compilation and down-loaded into the
development system for execution. With minimal changes to existing
development systems, the CDP1804P1 and CDM5332P1 can be developed and then

used in the final application system

2.

3.

FOOTNOTES

RCA Microprocessors User Group Compuserve User's Guide, July 1982
K. Jensen and N. Wirth, PASCAL User Manual and Report

(second edition),Springer-Verlag, New York, 1974

Hardware Reference for the CDP1804A data sheet,

File 1371

D.’Block, Programming 2732 PROM's with the CDP18S480

PROM Programmer, ICAN-6847

A
APPEND I # - MEMORY

P-CODE STORAGE REQUIREMENTS

The length of the P-code is the sum of the code length and the constant
length found in the program listing file output by the mCP compiler. The

constant storage area follows the program code contiguously.

RAM WORKING STORAGE REQUIREMENTS

The amount of RAM actually used by a program is computed during inter-
preter initialization. The address .of the next free byte of RAM is located

in the first word of RAM storage.
The amount of RAM used by a program is calculated:
B 24 + stack length + variable size

The stack length is the first parameter on the INIT PROCESS P-code. The
variable size is the second parameter. The parameter length is the third
parameter (it is zero for micro Pascal). The INIT PROCESS P-code is found

‘at the end of a "long" listing file output by the compiler.

Micro Pascal uses three bytes of the R2 system stack. Micro Concurrent
Pascal uses three bytes of the R2 system stack plus 13 bytes when flcating

point subroutines are used.

In a mCP program there may be several INIT PROCESS p-codes. These
must be summed to calculate the RAM storage requirements. Also the DOIO

table size and stack margin parameter must be included.

———— =

APPENDIX A ConT.

CDP1804PIMICRO CONCURRENT PASCAL

0000

XXXX

cooo0

C7FF

C800

C83F

'MEMORY MAP

(CORE INTERPRETER ONLY)

BRANCH/
PARAME TER
TABLE

b e e > > - - wn G- - - -

USER DEFINED
MACHINE
LANGUAGE

SUBROUTINES

COPTIONAL)

fo o - e - - o - —— e ——

APPLICATION
PROGRAM
P-CODE

RAM FOR
STACK
WORKING
STORAGE

1804 PASCAL
INTERPRETER
ROM (ON-CHIP)

ON-CHIP RAM

(NOT USED)

APPENDIX A CoNT.

COP1804P1IMICRO CONCURRENT PASCAL
MEMORY MAP WITH EXTENSION ROM

0000 MCP
EXTENSION
ROM
OFFF
1000
BRANCH/
PARAMETER
TABLE

USER DEFINED
MACHINE
LANGUAGE

SUBROUTINES
(OPTIONAL)

APPLICATION
PROGRAM
P-CODE

XXXX RAM FOR
STACK
WORK ING
STORAGE

coco
1804 PASCAL
INTERPRETER
C7FF ROM CON-CHIP)
C800

ON-CHIP RAM
(NOT USED)

C83F

APPENDIK A CONT.

RAM STORAGE LAYCUT

RAM BOTTOM + O

10
12
14
16

NEXT FREE BYTE OF RAM —

RAM TOP R(2)

ADDRESS OF NEXT FREE BYTE OF RAM

1804 COUNTDOWN TIMER
CURRENT LINE NUMBER
f ERROR CODE

P-CODE POINTER OF LAST FRROR

RESERVED FOR POWER FAIL

RESERVED

RESERVED

RESERVED
z PASCAL DATA STACK 3
£ ¥

PASCAL VARIABLES + 6

é-

FREE STORAGE

SYSTEM STACK
FOR INTERRUPTS, I/0, ASSEVBLY
LANGUAGE SUBROUTINES, ETC.

APPEND (X A ConT

The interpreter clears memory as part of its initialization. To

prevent memory clear the initialization sequence may be altered.

The following patch will prevent memory clear in micro Pascal:

Location Data
0003 0060 address of patch (can be any
suitable locatio

0060 68CDOOOF
ED 68676865 6886 686A

E2 68BSES 68 B725 S~ | (_

COCO1B

The following patch will prevent memory clear in micro Concurrent Pascal:

Location Data
1003 1060 address of patch (can be any
1060 ED 6867 6865 68666864 suitable location)

E2 68B5 E5 68B7 25
COCO1B

APPEND(X A CONT

USING 1804 MICRO PASCAL

In order to use 1304 micro Fascal, the programmer must set up a
Brénch table and a parameter area starting at location 0000 (hex).
Programmer defined external machine language subroutines may follow this
area or the number of buiit-in subroutines may be extended. Actual Pascal

P-code follows the built-in subroutine address table.

Page 00 branch table and parameter area:

ADDRESS DATA COMMENT
0008 7100 Disable interrupts
0002 COC000 Long branch to pre-initialization
0005 EEDFOO Post-initialization (could be long branch)
0008 C0C079 Long branch to software error continuation
000B COC6BB Long branch to external interrupt
000E Cl P-code subrouting adress table page
000F -— Bottom of RAM address
0011 —— Top of RAM address
0013 —— Size of RAM (RAM Top-RAM bottom +1)
0015 —— P-code starting address
0017 6000 Reserved for micro Concurrent Pascal extension
progran

The programmer defines the location of RAM working storage and the start-
ing P-code address. All other fields should reamin 2s specified above unless
special requirements must be met. The branch table is used by the optional

wCP ROM to link with the 1804 micro Pascal jnterpreter.

The addresses of bottom and top of RAM may be adjusted soc that nemory
spacz is available for working storage by external or built-in maching language
and interrupt subroutines. Only the area defined between RAM bottom and ROM
top will be cleared to =zero.

The applicaticn program P-codes output by the cross-compiler are re-
locatable anywhere in mearory. The starting P-code base address 1is specified

in the parameter area, location 0015 hexadecimal.

APPENDIX A (ONT

Page 00 must also contain the built-in machine language subroutine

address tatle:

ADDRESS

SUBROUTINE LOCATION
0019 €558
001B C55C
001D C560
001F C564
0021 €600
0023 €605
0025 Cc277
0027 CE0A
0029 €610
002E C2CE
002D €212
0ozr C22E
0031 C231
0033 €224
0035 C237
0037 C23A
0039 C£257
003B C25A
Co3p C?B5
003F C2B8
0041 C2BB
0043 CCDB
0045 COVE
0047 C2CE
0549 COEY
C04B COEl
064D COE4
004F 275

SUBROUTINE NAME

Test external flag 1 (EF1)
Tést external flag 2 (EF2)
Test external flag 3 (EF3)
Test external flag 4 (EF4)
Set DMA register (RO) to address
Get DMA register (RO) address
Set INTERRUPT register (R1) address
Set Q flag on or off

Test Q flag

Load counter

Get counter

Stop counter

Decrement Counter

Start timer

Start counter mode 1

Start counter mode 2

Start pulse mode 1

Start pulse mode 2

Enzble toggle Q flag
External interrupt erable
External interrupt disable
Counter interrupt enable
Counter interrupt disable
Set RAM timer word

Get RAM tiwer word

Enable interrupts

Disable interrupts

vait for interrupt

SELECTOR NUMBER

/

W 0 ~N O 1t & W N

The built-in machine language subroutines reside in the 1804 ROM.

Additional built-in subroutines may be coded by extending the list of sub-

1802/
>1804
built-i:

subr.

I\

>1804
built-i:

subr.

APPENDIX A ConT.

routine addresses. Up to a total of 128 built-in subroutine addresses may
exist. If a particular built-in subroutine entry is not used, it may be

replaced by another subroutine address.

APPEVDIX A CONT .

USING MCP EXTENSION ROH

T T - e e B T e T e T T T

With the micro Corcurrent Pascal extension RCM installed, the programmer
must set up a branch table and parameter area starting at location 1000 (hex).
Programmer defined external machine language subroutines may follow this area
or the number of built-in subroutines may be extended. Actual Pascal P-code
follows the built-in subroutine address table. The parameters in page 10
(hex) have the same relative position as parameters specified in page 00

for micro Pascal.

Page 10 (hexadecimal) branch table and parameter area:

ADDRESS DATA COMMENT

1000 71C0 Disable interrupts

1002 COC004 Long branch to pre-initialization

1005 EEDF0O0 Post-initialization (could be long branch)
1008 C00043 Long branch to software error continuation
100® C00304 Long branch to interrupt subroutine

100E 01 P-code subroutine address table page

1067 @ eme—- Bottom of RAM address

1011 —e——— Top of RAM address

1013 —eme—e Size of RAM (RAM top - RAM bottom +1)

1015 ————— P-code starting address

1017 0040 DOIO size and stack margin

The programmer defines the location of RAM working storage anrd the starting
P-code address. All other fields should remain as specified above unless
special requirements must be met. Adding initialization code, changing the
P-code branch table, etc., can be made by altering the branch and jparameter

table entries.

The addresses of bottom and top of RAM may be adjusted so ithat wemory
space is available for working storage Dy external cor built-in machine language
and interrupt subroutines. Only the area defined between RAM bottom and top

will be cleared to zero.

T A A e S e e e ek el AR D B AW L T o 6w P

APPENDIX A CoMT.

B T U AT Y

Pagé 10 must also contain the built-in machine language subroutine

address table:

ADDRESS

1019
101B
101D
101F
1021
1023
1025
1027
1029
102B
102p
102F
1031
1033
1035
1037
1039
103B
103D
10317
1041
1043
1045
1047
1049

Note:

SUBROUTINE LOCATION

C558
C55C
C560
C564
€600
C605
022E
C60A
C610
C20E
Cc212
C22E
Cc231
C234
€237
C23A
C257
C25A
C2B5
C2B8
C2EB
CODB
CODE
C2CE
COEY

SUBROUTINE NAME

Test external flag 1 (EFl)
Test external flag 2 (Er2)
Test external flag 3 (EF3)
Test external flag 4 (EF4)
Set DMA register R(0) to address
Get DMA register R(0) address
Change address of interrupt table
Set Q flag on or off

Test Q flag

Load ccunter

Get counter

Stop counter

Decrement counter

Start timer

Start counter mode 1

Start couﬁter mode 2

Start pulse mode 1

Start pulse mode 2

Enable toggle Q flag

External interrupt enable
External interrupt disable
Counter interrupt enable
Counter interrupt disable

Set RAM timer word

Get RAM timer word

SELECTOR NUMBER

O 0 N O W N

I R R R R R T e I T S SRy S Ry
M S W N R C VWO YW W O

1. Selector numher 7 is different from the micro Pascal built-in

subroutine.

2. Toe last three built-in subroutines in micro Pascal are omitted
here because they do not apply to micro Concurrent Pascal.

APPENDIX A CoNT

D..BUGGING TSING LINE NIRECTIVE

For debugging using the LINE directive, the line number of the statement
being executed can be found at RAM bottom + 4 (word). It may also be found at
the address found in register 11, the LOCAL variable pointer. The line
number is saved on the stack during a procedure or function call. However,
it is not restored to the LINE variable in RAM (RAM bottom + 4) by micro

Pascal. Micro Concurrent Pascal does restore the LINE number. !

DEBUGGING INTORMATION

When a software erfor occurs the error code will be stored at RAM
bottom + 7 (byte) and the P-code program counter (QPTR) will be stored at
RAM bottom + 8 (word). |

APPENDIX R

BUILT-IN ASSEMBLY LANGUAGE ROUTINES

Built-in assembly language routines a.: nrovided for common machine
oriented functions. These include subroutines for the counter/timer and

special instructions.

All built-in external routine declaration examples given below assume

the following-type declarations:
TYPE BUILT IN SUBR = 1...28;

INT BYTE = O...255;

APPENDIX B ColT.

i. TEST_EF1 (1)

Assembly longuage function tests external flag 1 (EF1l) and
returns either 0 ot 1 (boolean).
Routine declaration:
FUNCTION TEST_EF1l (SELECTOR: BUILT IN _SUBR): BONOLEAN;
EXTERNAL ‘TESTEFl';

2. TEST_EF2 (2)

Assembly language function tests external flag 2 (EF2) and
returns either 0 or 1 (boolean).
Routine declaration: . .
FUNCTION TEST_EF2 (SELECTOR: BUILT_IN SUBR): ,BOOLEAN;
EXTERNAL ‘'TESTEF2';

3. TEST_EF3 (3)

Assembly language function tests external flag 3 (EF3) and
returns either 0 or 1 (boolean).
Routine Declaration:
FUNCTION TEST_EF3 (SELECTOR: BUILT_IN SUBR): BOOLEAN;
EXTERNAL 'TESTEF3';

4., TEST_EF4 (4)
Assembly language function tests external flag 4 (EF4) and
returns with 0 or 1 (boolean)

Routine delcaration:

FUNCTION TEST_EF4 (SELECTOR: BUILT IN SUBR): BOOLEAN;
EXTERNAL 'TESTEF4';

kPPEUDIX B CONT .

5. DMA_SET (address to set RO, 5)

Assembly language procedure sets the DMA register R(0) to
the address given by the first parameter.
Routine declaratjon:)
PROCEDURE DMA_SET (RO_ADDRESS: ADDRESS; SELECTOR: BUILT_IN SUBR);
EXTERNAL 'DMASET';

6. DMA ASK (6)

Assembly language function returns the address value of
the DMA register R(0).
Routine declaration: o .
FUNCTION DMA_ASK (SELECTOR: BUILT_IN_SUBR): ADDRESS;
EXTERNAL DMAASK';

74. INTERRUPT (interrupt subroutine address to set R1, 7)

Micro Pascal:

Assembly language procedure sets the interrupt register R(1)
to the address of the interrupt subroutine given by the
first parameter.

Routine declaration:

PROCEDURE INTERRUPT (INTERRUPT_ADR: ADDRESS; SELECTOR: BUILT_IN_SUBR);
EXTERNAL - "INTCH';

7B. SWITCH_INTTBLS (address of interrupt table, 7)

Micrc Concurrent Pascal:
Assembly language procedure changes the address of the inte%rupt
table. Procedure alters RAM bottom + 16 (word) with new
interrupt table addresses.
PROCEDURE SWITCH INTTBLS (NEW_INTTBL_ADR: ADDRESS; SELECTOR:
BUILT_ IN SUBR); EXTERNAL 'INTCH';

APPENDIX B COVOT.

8. SET_Q FLAG (Q flag value, 8)

Assembly language procedure sets the Q flag to either O or 1
given by the first parameter;
Routine declaration:
PROCEDURE SET_Q FLAG (Q_FLAG: BOOLEAN; SELECTOR:
BUILT IN SUBR); EXTERNAL ‘SETQ'; .

9. GET_Q _FLAG (9)

Assembly language function tests the G flag and returns

either 0 or 1 (boolean).

Routine declaration: S e

FUNCTION GET_Q FLAG (SELECTOR: BUILT IN STUER): BOOLEAN;
EXTERNAL 'GEIQ';

10. LOAD_COUNTER (count value, 10)

Assembly language procedure sets counter to the counter value
given by the first parameter. The value ranges from 2 to
255. The procedure executes the LDC instruction.
Routine declaration:
PROCEDURE LOAD COUNTER (COUNT: INT_BYTE; SELECTOR:
BUILT_IN SUBR); EXTERNAL 'LDC’;

11. GET_COUNTER (11)

Assembly language function returns the value of the counter.
This function executes the GEC instructiom.
Routine declaration:
FUNCTION GET_COUY ER {SELECTOR: BUILT_IN_SUBR): INTEGER;
EXTERNAL 'GEC'; '

frPPE/\)D(x B CcoNT.

. 12. STOP_COUNTER (0, 12)

Assembiy language procedure stop the counter. The first
parameter is a dummy parameter. This procedure executes the
STPC instruction.
Routine declaration:
PROCEDURE STOP_COUNTER (DUMMY: INTEGER; SELECTOR:
BUILT_IN_SUBR); EXTERNAL 'STPC';

13. DECREMENT_COUNTER (0, 13)

Assembly language procedure decrements the counter by 1. The
first parameter is a dummy parameter. This procedure executes
the DTC instruction.
Routine declaration:
PROCEDURE DECREMEXI_QOUNTER (DUMMY: INTEGER; SETLECTOR:
BUILT_IN SUBR); EXTERNAL 'DIC';

14. START TIMER (0, 14)

Assembly language procedure sets the timer mode and starts
the timer. The first parameter is a dummy parameter. This
procedure executes the STM instruction.
Routine declaration:
PROCEDURE START TIMER (DUMMY: INTEGER; SELECTOR: BUILT_IN SUBR);
EXTERNAL 'STM';

15. START COUNTER _MODEL (0, 15)

Assembly language procedure sets counter mode 1 and starts the
counter. The first parameter is a dummy parameter. This
procedure executed the SCM1 instruction.
Routine declaration:
PROCEDURE START COUNTEP_MODEL (DUMfY: INGETER; SELECTOR:
BUTLT_IN SUBPR); EXTERNAL SCMi';

APPENDIX B (ONT-

16. START_COUNTER_ MODE2 (0, 16)
Assembly language procedure sets counter mode 2 and starts
the counter. The first parameter is a dummy parameter. This
procedure executes the SCMZ instruction.
Routine declaration:
PROCEDURE START_ COUNTER_ MODE2 (DU12f7: INTEGER; SELECTOR:
BUILT_IN SUBR); EXTERNAL "STM2':

17. START_PULSE_ ¥OPT1 (C, 17)

Assembly language procedure sets pulse mode 1 and starts
counter. The first parameter is a dummy parameter. This
procedure executed SPM instruction.
Routine declaration:
PROCEDURE START PULSE MODEL (D™MMY: INTEGER; SELSCTOR:
BUILT_IN_ SUBR); EXTERNAL 'SPM1';

18. START PULSE_MODE 2 (0, 18)

Assembly language procedure sets pulse mode 2 and starts
counter. The first parameter is a dummy parameter. This
procedure executes the SP!}2 instruction.
Routine declaration:
PROCEDURE START PULSE_MODE2 (DUMMY: INTEGER; SELECTOR:
BUILT_IN_SUBR); EXTERNAL 'SpPM2';

19. ENABLE TOGCLE Q (0, 19)
Assembly language procedure sets the counter to toggle Q
whenever the counter decrements from 0l to its nex: value. The
first parameter is a dummy parameter. This procedure executes
the ETQ instruction.
Routine declaration:
PROCEDURE ENABLE TOGGLE Q (DUMMY: INTEGER; SELECTOR:
BUILT_IN_SUBR); EXTERNAL 'ETQ';

APPEADIX B COMUT.

———

20. EXT_INTERRUPT_ENABLE (0, 20)

Assembly language procedure enables external interrupts. The
first parameter is a dummy parameter. This procedure executes
the XIE instruction.

Routine declaration:

PROCEDURE EXT INTERRUPT ENABLE (DUMMY: INTEGER; SELECTOR:
BUILT IN SUBR); EXTERNWAL 'FIE';

21. EYT_INTERRUPT_DISABLE (0, 21)

Assembly language procedure disables externmal interrupts. The
first parameter is a dummy parameter. This procedure executes

the XID instruction.

.

Routine declaration:

PROCEDURE EXT_INTERRUPT DISABLE (DUMMY: INTEGER; SELECTOR:

BUILT IN SUBR); EXTERMAL 'XID';

22. CNT_INTERRUPT ENABLE (0, 22)

Assembly language prodecure enables counter interrupts. The
first parameter is a dummy parameter. This procedure executes
the CIE instruction.

Routine declaration:

PROCEDURE CNT_INTERRUPT_ENYABLE (DUMMY: INTEGER; SELECTOR:
BUILT IN_SUBR); EXTERNAL '"CIE';

23. CNT_INTERRUPT_DISABLE (0, 23)

Assembly language procedure disables counter interrupts. The
first parameter is a dummy parameter. This prodecure executes
the CID instruction.

Routine declaration:

PROCEDURE CNT_INTERRUPT DISABLE (DUMMY: INTEGER; SELECTOR:
BUILT_IN_SUBR); EXTERNAL 'CID';

APPENDIX B coUT.

24, SET_TIME (time value, 24)

Assembly language procedure sets the timer word to the time
value given by the first parameter. The timer word is decremented
once whenever the timer/counter interrupt subroutine is executed
until the timer word reaches zero.
Routine declatation:
PROCEDURE SET_TI}fE (TIME: INTEGER; SELECTOR: BUILT_IN_SUBR);
EXTERNAL 'SETIME';

25. GET_TIME (25)

Assembly language function returns the current value of the
timer word.

Routine declaration:

FUNCTION GET_TIME (SELECTOR: BUILT_IN_SUBR): INTEGER;
EXTERNAL 'GETIME'; ’

25. ENABLE_INTERRUPTS (0, 26)

Assembly language procedure enables interrupts. The first
parameter is a dummy parameter. This procedure executes the
RET instruction.
Routine declaration:
PROCEDURE ENABLE_INTERRUPTS (DUMMY: INTEGER; SELECTOR:
BUILT_IN_SUBR); EXTERNAL 'ENB';

27. DISABLE INTERRUPTS (0, 27)

Assembly language procedure disables interrupts. The first
parameter is a dummy parameter. This procedure executes the
DIS instruction.
Routine declaration:

PROCEDURE DISABLE INTERRUPTS (DUMMY: INTEGER; SELECTOR:

BUILT _IN SUBR); EXTERNAL 'DIS';

APPENDIX B CONT

28. IDLE (O, 28)

Assembly language procedure waits for interrupts. The first

parameter is a dummy parameter. This procedure executes the
IDL instruction.

Routine declaration:

PROCEDURE IDLE (DUMMY: INTEGER; SELECTOR: BUILT_IN SUBR);
EXTERNAL 'IDL'; S

e -~ L i meem o e e wmme = s me o - .

APPENDIX C

HANDLING INTERRUPTS

Interrupts can be enabled or disabled at any :ime at the option of the
programmer. Interrupts do not affect P-code implementation. Interrupts
are not enabled/disabled between P-code execution. The interrupt routine
must save and restore the D register and DF flag on the interrupt stack (R2),

along with any registers used.

Because concurrency is omitted from the 1804 ROM, external interrupts
must be handled by the programmer. The ROM contains a built-in interrupt

subroutine for processing counter interrupts.

The built-in counter interrupt subroutine decrements a timer word in
RAM if it is non-zero. Two built-in assembly language subroutines let the

programmer read and write this timer word.

The interrupt subroutine branches to a fixed location in the user P-code
ROM. This linkage 1is provided for handling external hardware interrupts.
Hardware interrupts aust be latched. External interrupts have higher priority

than counter interrupts.

APPENDIX € (ONT

—_—

USER DEFINED INTERRUPT SUBROUTINE

A User interrupt handling subroutine may replace the built-in counter/
timer subroutine by setting register 1 to the interrupt subroutine address.
This may be accomplished by calling the built-in subroutine selector number
7 (interrupt change). The interrupt subroutine must save DF, D, and any
registers used on the R2 stack (R2 must first be decremented before storing

data). The counter/timer interrupt subroutine may serve as a useful model.

MCP COUNTER/TIMER INTERRUPT TABLE ENTRY

With the mCP extension ROM installed, timer/counter interrupt is
specified in the interrupt table with a group number of zero and an EF flag

number of zero.

The Micro Concurrent Pascal User's Guide describes how to set up the

interrupt table.

MCP CCUNTER/TIMER PRESCALING

An 18C4 timer/counter prescaling feature is available in the interrupt
subroutine. All 1804 timer/counter interrupts are scaled by the value in
the 1804 'TDMER word in RAM. The TIMER word must be set to the initial
prescale value minus 1 in each byte. For example, timer interrupts occﬁring
at 1/60th of a second can be scaled to every second by placing 3B3B in the
TIMER word (3BH=59). The high order byte is the initial prescale value and
the low order byte is a prescale variable. The SET RAM tuner word (selector

number 24) built-in subroutine initializes the timer word.

Normzlly the timer word is zero so that no prescaling takes place.

APPEWDIX C CoUT

EXTENDING THE NUMBER OF TIMERS

Extra counﬁer/timers may be added to the built-in interrupt routine by
using the link for external interrupts. Use the external interrupt link to
branch to a BCI instruction that checks for counter/timer interrupt. If this
is a counter/timer interrupt request decrement each storage word containing
the timer. Finally, branch to location C6CO (PTIMER) to reenter the interrupt
subroutine. Machine language subroutines would also have to be added to
read and write the extra timer words. These subroutines must use RLXA and
RSXD instructions to read and write timer words to prevent the interrupt
progran from updating timer wcrds while the main program accesses the timer

words.

APPENDLX D

XSFEQOO

CDOS Micro NET Executive
Copyright (C) 1981 Compuserve Incorporated

dser ID: 70161.112
Fassword: XXXRXX XX

CompuServe Information Service

13:15 EDT Friday 24-Sep-82

OF:

R FILTRN
CompuBServe File Transfer Frogram

Select direction:
1 if to your RCA COSMAC DEVELOFMENT SYSTEM IV
2 if to the FDP-10Q

e]
Toas
L

Enter the FDF-10 file specification: FASCAL.SRC

Flease give me a filespec for CDOS: FASCAL.SRC:1

INITIALIZING FROTOCOL

UFLOAD STARTING

¥¥% File transfer completed! XXX

Ok
R MCF

RCA/Enertec Fascal Compiler

APPEANDIX D CONT.

Name of vyour source file: FASCAL.SRC

Ok

—compiler passes—

ox R PHEX
Z -~ _////

P a—

R _FILTRN
CompuServe File Transfer Frogram

Select direction:
1 if to your RCA COSMAC DEVELOFMENT SYSTEM 1V
2 if to the FDF-10

71

Enter the FDF-10 file specification: FASCAL.HEX

Flease give me a filespec for CDOS: FASCAL.HEX:1

INITIALIZING FROTOCOL

DOWNLOAD STARTING

¥%¥%X File transfer completed! XXX

Ok

APPENOIX E

PARALLEL 1/0
INTERFACE
) o
MRO- N
Pe-P

PREBERRERIek kI

MRO-N

Ni-P

ARDY-P-p2-29 N2-
[

87-p P2-i2
86-P P2-10
8s-» P2- 8
SaP P2-6
03-P P2-4 +V
02-p P2-1
92C3-31463
v
cr
ca
uez
v
WAIT-N +— i
(PI-10) - 3 28 ouaz-w pi-t
2 PI-60- —x1 u3e = DMAO-N P|-2
W lgl P1-8 SCYP —3- INT-N P-4
Pi-7 Sgb-P MWR-N Pi-W
CLEAR-N P1-5 NAD-N TPA-P PI-A
(PI-9,P2-16) :o o.tn—l- cPu TP8-P PI-8
p —3 AT-P PRV
-4 Dgs-p—K AG-P PI-U
Pi-H 084 p—LLi lgg:, AS-P PT
M0 A s s
A2-P PI-P
Al-P PI-N
+v AC-P Pi-M

‘LKQS
Pl=X Oy EF 4 -N(P2-24)
Nz

N
rc-zo-ﬁ-ou VA I8V (P2-34)

Pi-v21 +V (S VOLTS) (P2-30)
Pi-1l . -8V~ ISV(P2-32)
“f1 o
r-2,22 ‘ (P2-2,14,18,22 AND 28)

92CS-31464

EFI-N PI-I7,P2-38

EF2-N PI-18,P2-31

EF3-N PI-19,P2-26
121 Era-n

92CS-31469R)

LK36
0
EF3-N—0

9
EF4-N—O

92C8- 31468

CLEAR-N

CDP18S601

SPARE

&

T ol i
o—INT-N
SELA-P | inre-n =1 8
r3 i
u3s y'Hc v
ne
' T
INT A-N €Fion
|3
ARDY-P
3ic uso
- 10
4
*l—s—-—EFZ-N
u30
O
92CS-31468
10 ¢ x out
P-13
-7 z CURRENT
L
Ji-3 Ut
J2-!
Ja2-0
SEmAL I/0 £
INTERFACE J2-6
+12V/418V RS J2-7
o-r _1 J2-8
RS232C DATA
J2-3
—Svr-sy 92CS-31467
+v
né
RS
s < EIA
74 AN J2-2 DATA
CRi
ut , % %cnz L
S I —AAA~ Ji-8
< CURRENT
Ris Jhe LOOP IN
% f“' 1 DATA
I J-a
NOTE -

WIRE JUMPER WJI TOBE INSTALLED
FOR RS232C OPERATION. USE HOLES
MARKED CS

Logic diagram of Microboard Computer CDP18S601 - CPU and interface portions.

APPENDIK F

CDP18S601

_]I

—

9

|

D2-P
DI - P
00-~
087-P—=
- o Dé-P
ooe-r—i uy [o
DBS-P: = ~ DS-P
DB4-P = : Da-p
[
t 4
o3P b3-p
o82- us fo-b2-p
4
o8t-P1= = Di-P
on 2 po-p
I 5
|
|
if \r
]
[
L {30
&
J
oo-¢ Al- P2
4]

{1

AN

Logic diagram of Microboard Computer CDP18S601 - memory portions.

oo-pP

Z}-Ano-v

+v

w7

&
- A
—an-n 'y Elao-n

92CL-314TOR2

APPERDIX G

*PEPQPQ (execute program)

MCDS Micro NET Executive
Copyright (C) 1981 Compuserve, Inc.
(Dial up the Micro Net telephone number, wait for the modem ready signal)

1C (control C)
User ID: 70007,530 return
Password: MCDS; APR, return

Compuserve Information Service

'10:20 EDT Monday, 03-May-82
OK

(Enter and/or Edit a MCP source program)

R FILGE return (run file generator)
*I10601 .MCP return (enter file name)
New file 106P1.MCP created-ready (new file response)
File I0601.MCP ready (old file response)

(Edit MCP source file)

(*$ PERMIT, HIGHBYTE, LIST-SHORT $*)

(*Turn on output port using switches from input*)

CONST

APORT = ADR (£0804); (*output*)
BPORT = ADR (#080E); (*input*)
CNTRL = ADR (#0802);) (*control*)
VAR

X : Integer;

BEGIN
OUT (#4B, CNTRL) ; (*set A output¥)
OUT (#13, CNTRL) ; (*set B output¥)

CYCLE
X : = INN (BPORT);
OUT (X, APORT)

END.
/EXIT

OK

APPENDIX G CouT;

R MCP (execute compiler)

RCA/Enertec Pascal Computer
Name of your source file: I06§1.MCP return

OK

-compiler passes-

OK _— R RHEX
&_——f .

DIR return : - idisplay directory)
106@1.LST ‘

10641 .DBG -

10601.HEX

10601.MCP

R F1LTRN (run file transfer to perform down load)
Compuserve File Transfer Program

Select direction:

toyour 1. if RCA COSMAC Microboard Development System (down lecad)
e/,
2. 1if to the PDP - 10 (up load)

? 1 return
Enter the PDP-10 file specification: I0601.HEX
Please give me a filespace for MCDS; § (tape drive @)

INITIALIZING PROTOCOL
Rewind, then hit any key return

Depress Play/Record and any key return

DOWNLOAD STARTING
ceececcene (down 1load)

*** File transfer completed ***

OK

X (control X enters MCDS utility momitor
program)

* R o (read tape for down loaded program)

TAPE # § return
LOAD ING
*R (read tape for Pascal parameter table)

./‘(PPEUD(X &4 H

HANDLING SOFTWARE ERRORS

The micro Pascal interpreter halts for the following software errors:

BAD P-CODE
MEMORY OVERFLOW
RANGE ERROR
DIVIDE BY ZERO

The micro Pascal interpreter continues orocessing P-codes for the following

software error:

ARITEMETIC OVERFLOW
(use PEEK to access software
error code and POKE to reset

" error code to zero)

To halt the interpreter on arithmetic overflow instead of continuing, change
the branch table locaticn 000BH to COCbEB. Arithmetic overflow occurs in
ADD, SUBTRACT, NEGATE, ABS, DEC, INC, COPY BYTE and MULTIPLY integer P-code
subroutines. The stack contains the overflow result and may be used in sub-

sequent F-code operations.

Micro Concurrent Pascal handles errors differently from micro Pascal.
If the software error process exists, micro Concurrent Pascal will execute

the error process when an error occurs, otherwise the program halts.

MCP COMPILER DIRECTIVES

The following directives must be defined in the micro Pascal source

program:
RIGHBYTE (determines HI-LO byte order for P-code generation)
PERMIT (permits calls to INN, OUT, PSEK, PCKE)

For example:
(*$ HIGHBYTE, PERMIT $*)

should be the first line of the progran.

frPPEMD(X T

USER DEFINED BUILT-IN SUBROUTINE LINKAGE

Build-in subroutines (se register 8 as the program counter with X set to
register 14. The first parameter is the integer value for indexing into the
subroutine address table. This value is popped off the stack by the inter-
preter before entry into the subroutine. Register 5 contains the second
parameter on entry to the subroutine. Built-in assembly language procedures
must have at least two formal parameters while functions must have at least
one formal parameter. Register 14 points to the top of stack most significant

byte on entry; X is set to register 14.

On exit from the subroutine X must be set to register 14. To return

use the instruction set P to register 15.

Registers that may be used without saving and restoring their constants
are R4, R5, and R7. All others nmust be saved and restored using the R2 stack.

Register 2 must be decremented before storing registers.

The subroutine linkage technique does not use standard cail/return because

it references a table of addresses and is faster than SCAL/SRET instructions.
An example of a built-in subroutine is GET_Q_FLAG: -

..X is 14; P is 8

ASKQ DEC 14 ..reserve stack space
DI ¢ |
LSNQ ' ..test Q flag
LDI 1
STXD ..store least significant byte
LI ¢ | |
STR 14 ..store most significant byte

SEP 15 ..return to interpreter

APPENDIX T COMNT

USER-DEFINED EXTERNAL ASSEMBLY LANGUAGE SUBROUTINES

A selector equal to O identifies a user-defined assembly langugage routine.
The user provides the address of the assembly language routine in the call.
The interpreter pops it from the stack and uses the standard call and return
technique to execute the routine. Register 6 contains the address for
returning to the interpreter. Register 3 is the program counter used to
enter the assembly language routine. Register 14 is the data parameter pointer
to the first byte of any parameters before execution of the routine. After
execution the stack pointer register 14 points to the top of the stack entry.
Register 2 is the system stack used to save.registers. It is used to return

control to the interpreter using the standard return instruction.

The user is responsible for setting register 14 to point beyond all »
parameters. Reglsters available to run assembly language routines are 4, 5, 7,
and 8.

Registers 1 and 13 must not be altered at any time if interrupts are
enabled. Other registers may be used if restored to their original value.

Register 2 must be decremented before storing registers.

_APPENDIXK T CoMT

The following model and example describes the construction of an external

assembly language subroutine: '

SUBR SK R2 ..set X to system stack
DEC R2
optional RSXD register ..save register on R2 stack
SEX R14 ..set X to parameter stack
RLXA register ..get data from stack
DEC R14 .
RSXD register ..store data on stack
INC R14 ..adjust stack pointer to

point to most significant

. o m—— -- byte e e

SEX R2
" optional : INC R2 i ..adjust stack pointer
restore RXLA register ..restore register saved
registers

SRET R6 ..standard return

S
—
e e //

