

CGS100P2530 PECL-TTL 1 to 10 Minimum Skew Clock Driver CGS100P2531 PECL-TTL 2 to 10 Minimum Skew Clock Driver

General Description

These minimum skew clock drivers are designed for Clock Generation & Support (CGS) applications, particularly for ECL to TTL clock tree distribution schemes. The '2530 and '2531 are single supply devices with guaranteed minimum output skew across the outputs of a given device. Skew parameters are also provided as a means to measure duty cycle requirements as those found in high speed clocking systems. The '2530 is a minimum skew clock driver with one input driving ten outputs and the '2531 is a selectable two input to 10 outputs, specifically designed for signal generation and clock distribution applications.

Features

- PECL-TTL version of National's CGS74B2528 TTL clock drivers
- Clock Generation & Support (CGS) devices ideal for ECL and TTL clock trees with CGS 100311
- 1-to-10 or 2-to-10 low skew clock distribution
- 550 ps pin-to-pin output skew
- Specification for transition skew to meet duty cycle requirements
- 28-pin PCC to minimize high speed switching noise and for low dynamic power consumption
- Current sourcing 48 mA and current sinking of 64 mA
- Low dynamic power consumption above 20 MHz
- Guaranteed 4 kV ESD protection

Logic Symbols

Connection Diagrams

Functional Description

On the multiplexed clock device, the SEL pln is used to determine which CKn will have an active effect on the outputs of the circuit. When SEL = 1, the CK1 input is selected and when SEL = 0, the CK0 input is selected. The non-selected CKn input will not have any effect on the logical output level of the circuit. The output pins act as a single entity and will follow the state of the CK, CK1/CK0 pins when either the multiplexed ('2531) or the straight ('2530) clock distribution chip is selected.

Truth Tables

'2530				
Inp	uts	Outputs		
СК	ČK	0 ₀ -0 ₉		
L	н	L		
н	L	н		
L	L	U		
н	н	U		
L	VBB	L*		
н	V _{BB} V _{BB}	H•		
VBB	X	V _{BB}		

L = Low Logic Level

H = High Logic Level

X = Don't Care U = Undefined

* - Single Ended Operation

Pin Description

Description
PECL Differential Clock Input ('2530)
PECL Differential Clock Input ('2531)
TTL Outputs PECL Clock Select ('2531)

	'2531					
	1	Inputs			Outputs	
СКО	CKO	CK1	CK1	SEL	0 ₀ -0 ₉	
L	н	х	x	L	L	
н	L	X	х	L	н	
L	L	x	х	L	U	
н	н	x	х	L	U	
L	V _{BB}	х	x	L	L•	
н	VBB	х	х	L	Н•	
х	X	L	н	н	L	
x	х	н	L	н	н	
х	X	L	L	н	U	
х	х	н	н	н	U	
х	x	L	VBB	н	L•	
х	х	н	VBB	н	Н*	

TL/F/10983-6

Absolute Maximum Ratings (Note)

If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature	-65°C to +150°C
Maximum Junction Temperature Plastic	150°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
TTL Input Voltage (Note 2)	-0.5V to +7.0V
TTL Input Current (Note 2)	-30 mA to +5.0 mA
VBB Output Current	-5.0 mA to +1.0 mA
ECL Input Potential	
to GND Pin	-0.5V to V _{CC} $+0.5V$
Typical θ_{JA}	V Package
0 LFM Airflow	69
225 LFM	53
500 LFM	45

Voltage Applied to Output	
(with $V_{CC} = 0V$)	-0.5V to V _{CC}
Current Applied to Output	Twice the Rated
in Low State (Max)	I _{OL} (mA)
ESD Last Passing Voltage (Min)	2000V

Recommended Operating Conditions

Operating Free Air Temperature Range

-40°C to +85°C 4.5V to 5.5V

 Supply Voltage
 4.5V to 5.5V

 Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Over recommended operating free air temperature range. All typical values are measured at V_{CC} = 5V, T_A = 25°C.

Symbol	Parameter		Conditions Min		Тур	Max	Units	
VOH	High Level		High Level $I_{OH} = -3 \text{ mA}, V_{CC} = 4.5 \text{V}$		2.4			
	Output Voltage		$I_{OH} = 48 \text{ mA}, V_{CC} = 4.5 \text{V}$	2.0				
VOL	Low Level Output	Voltage	$V_{CC} = 4.5V, I_{OL} = 64 \text{ mA}$		0.375	0.55	v	
V _{BB}	Output Reference Voltage		$I_{V_{BB}} = -1 \text{ mA}$	V _{CC} - 1.38		V _{CC} - 1.26	v	
VDIFF	Input Voltage Diffe	rential	Required for Full Output Swing	150			mV	
V _{CM}	Common Mode Voltage		High Level	V _{CC} - 1.6		$V_{CC} - 0.4$	v	
VIH	Input High Voltage		Guarantee HIGH Signal for All Inputs	V _{CC} - 1.165		V _{CC} - 0.87	v	
VIL	Input Low Voltage		Guarantee HIGH Signal for All Inputs	V _{CC} - 1.83		V _{CC} - 1.475	v	
կլ	Low Level Input Cu	urrent	$V_{IN} = V_{IL}$ (min)	0.50			μA	
Чн	High Level Input Current		$V_{IN} = V_{IH}$ (max)			50	μA	
I _{CBO}	Input Leakage Cur	rent	V _{IN} = 0	-10			μA	
Іссн	Supply Current	'2530	$V_{CC} = 5.5V$			30	mA	
		'2531				33		
los	Output Current Driv	ve	$V_{CC} = 5.5V, V_O = 2.25V$	-50		- 150	mA	
ICCL	Supply Current	'2530	$V_{\rm CC} = 5.5 V$			72	mA	
		'2531				75		

AC Electrical Characteristics

Over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			Units	
		Min	Тур	Max		
fMAX	Frequency Maximum	70			MHz	
t _{PLH}	Low-to-High Propagation Delay CK to O _n ('2530)	3.4	5.0	7.0	ns	
^t PHL	High-to-Low Propagation Delay CK to O _n ('2530)	3.4	5.0	7.0	ns	
t _{PLH} , t _{PHL}	Propagation Delay CKn to O _n ('2531)	4.0 4.0	5.0 5.0	8.0 8.0	ns	
t _{PLH} , t _{PHL}	Propagation Delay SEL to O _n ('2531)	5.0 5.0	5.0 5.0	10.0 10.0	ns	

Extended AC Electrical Characteristics

Over recommended operating free air temperature range. All typical values are measured at V_{CC} = 5V, $T_A = 25^{\circ}C$.

Symbol	Parameter	V _{CC} (V)*	$CGS100P$ $T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_{L} = 50 \text{ pF}$ $R_{L} = 500\Omega$			Units
			Min	Тур	Max	
tOSHL	Maximum Skew Common Edge Output-to-Output Variation (Note 1)	5.0		150	550	ps
tOSLH	Maximum Skew Common Edge Output-to-Output Variation (Note 1)	5.5		150	550	ps
t _{PS}	Maximum Skew Pin (Signal) Transition Variation (Note 1)	5.0		0.6	1.1	ns
t _{rise} , t _{fall}	Rise/Fall Time (from 0.8V/2.0V to 2.0V/0.8V)	5.0		1.0	1.5	ns

*Voltage Range 5.0 is 5.0V ±0.5V

Note 1: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}) or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design. See Figures A and B of Parameter Measurement Information.

Definition	Example	Significance	
toshL, tosLH Common Edge Skew: Output Skew for HIGH-to-LOW Transitions: $t_{OSHL} = t_{PHL_{max}} - t_{PLL_{min}} $ Output Skew for LOW-to-HIGH Transitions: $t_{OSLH} = t_{PLH_{max}} - t_{PLH_{min}} $ Propagation delays are measured across the outputs of any given device.	cLO:K INPUT output 1 output 2 FIGURE A	 t_{OS}, Output Skew or Common Edge Skew Skew parameter to observe propagation delay differences in applications requiring synchronous data/ clock operations. 	
tps PIn Skew or Transition Skew: $t_{PS} = t_{PHL_i} - t_{PLH_i} $ Both HIGH-to-LOW and LOW-to-HIGH propagation delays are measured at each output pin across the given device. t_{PS} is the maximum difference for outputs $i = 1$ to 8 within a device package.	clock input 50% duty cycle output 1 $\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}$	 tps, Pin Skew or Transition Skew Skew parameter to observe duty cycle degradation of any output signal (pin). 	