National Semiconductor

CGS64/74B2528 550 ps 1 to 10 Minimum Skew Clock Driver

General Description

These minimum skew clock drivers are designed for Clock Generation & Support (CGS) applications operating above 50 MHz. This device guarantees minimum output skew across the outputs of a given device. Skew parameters are also provided as a means to measure duty cycle requirements as those found in high speed clocking systems. The '2528 is a minimum skew clock driver with one input driving ten outputs, specifically designed for signal generation and clock distribution applications.

Features

- Clock Generation & Support (CGS) devices ideal for high frequency signal generation or clock distribution applications
- CGS64/74B version features National's Advanced Bipolar FAST[®] LSI process
- 1-to-10 low skew clock distribution
- 550 ps pin-to-pin output skew for the PCC package
- Specification for transition skew to meet duty cycle requirements
- 28-pin centered V_{CC} and GND configuration or PLCC to minimize high speed switching noise
- Current sourcing 48 mA and current sinking of 64 mA
- Low dynamic power consumption above 20 MHz
- Guaranteed 4K volts ESD protection
- Commercial and Industrial temperature availability

Ordering Code: See Section 5

Logic Symbol

TL/F/10984-1

Connection Diagrams

Pin Description

Pin Names	Description
СК	Clock Input ('2528)
O ₀ -O ₉	Outputs

Truth Tables

Inputs	Outputs
СК	0 ₀ -0 ₉
L	L
н	н

L = Low Logic Level H = High Logic Level X = Immaterial

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Volta	ge (V _{CC})			7.0V
Input Voltage	e (V _I)			7.0V
Operating Te	mperature	64 Grade	-40°C	to +85°C
		74 Grade	0°C	to + 70°C
Storage Tem	perature Range		-65°C	to + 150°C
Typical θ_{JA}	м	Ν	v	
0 LFM	89	71	64	°C/W
225 LFM	71	57	52	°C/W
500 LFM	63	48	45	°C/W

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
High Level Input Voltage (VIH)	2V
Low Level Input Voltage (VIL)	0.8V
High Level Output Current (I _{OH})	– 48 mA
Low Level Output Current (IOL)	64 mA
Free Air Operating Temperature 64 (TA)	-40°C to +85°C
Free Air Operating Temperature 74 (T _A)	-0°C to +70°C
NOTE: The Absolute Maximum Ratings beyond which the safety of the device of teed. The device should not be operated parametric values defined in the DC and acteristics tables are not guaranteed at mum ratings. The Recommended Operal define the conditions for actual device op	cannot be guaran- at these limits. The AC Electrical Char- the absolute maxi- ting Conditions will

DC Electrical Characteristics

Over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
VIK	Input Clamp Voltage	$V_{\rm CC} = 4.5 V_{\rm r} I_{\rm I}$			-1.2	V	
V _{OH} High Level Output Voltage		$I_{OH} = -3 \text{ mA}, V_{CC} = 4.5 \text{V}$		2.4			v
	I _{OH} = 48 m		√ _{CC} = 4.5V	2.0			
V _{OL}	Low Level Output Voltage	$V_{CC} = 4.5 V, I_{OL} = 64 \text{ mA}$			0.35	0.5	V
lı	Input Current @ Max Input Voltage	$V_{CC} = 5.5V, V_{IH} = 7V$				0.1	mA
IIH	High Level Input Current	$V_{CC} = 5.5V, V_{IH} = 2.7V$				20	μA
l _{IL}	Low Level Input Current	$V_{CC} = 5.5 V, V_{IL} = 0.4 V$			-0.5	-0.75	mA
lo	Output Drive Current	$V_{\rm CC} = 5.5 V, V_{\rm O} = 2.25 V$		-50		- 150	mA
I _{CC} Supply Current	$V_{CC} = 5.5V$	Outputs High		24	35	mA	
			Outputs Low		45	65	mA
CIN	Input Capacitance	$V_{CC} = 5V$			5		pF

AC Electrical Characteristics

Over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	V _{CC} = 4.5V to 5.5V C _L = 50 pF R _L = 500Ω			Units	
		Min	Тур	Max		
f _{MAX}	Frequency Maximum		80		MHz	
t _{PLH}	Low-to-High Propagation Delay CK to O _n ('2528) M, N	3.0	4.5	7.0		
	Low-to-High Propagation Delay CK to O _n ('2528) V 2.5	2.5	4.5	6.5	ns	
^t PHL	High-to-Low Propagation Delay CK to O _n ('2528) M, N	3.0	4.5	7.0		
	High-to-Low Propagation Delay CK to O _n ('2528) V	2.5	4.5	6.5	ns	

Extended AC Electrical Characteristics

Over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter		V _{CC} * (V)	$V_{CC} = 4.5V \text{ to } 5.5V$ $C_L = 50 \text{ pF}$ $R_L = 500\Omega$			Units
		Package		Min	Тур	Max	1
tOSHL	Maximum Skew Common Edge Output-to-Output Variation	N M V	5.0		0.15	800 650 550	ps
toslh	Maximum Skew Common Edge Output-to-Output Variation	N M V	5.0		0.15	800 650 550	ps
t _{PS}	Maximum Skew Pin (Signal) Transition Variation	N M V	5.0		0.6	750 750 850	ps
t _{rise} ,	Rise/Fall Time	CGS74	5.0			1.5	ns
t _{fall}	(from 0.8V/2.0V to 2.0V/0.8V)	CGS64	5.0		l	1.75	

*Voltage Range 5.0 is 5.0V $\pm 0.5V$

Note: t_{OSHL} and t_{OSLH} parameters are being tested and guaranteed at 1 MHz for V package. In addition V package is guaranteed by design at 66 MHz until Oct. 1993, when it will be fully production tested.

2528

Minimum Skew Parameters

2528

Parameter Measurement Information (Preliminary)

Definition	Example	Significance
$\label{eq:common Edge Skew:} \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	CLOCK INPUT output 1 output 2 FIGURE A	 t_{OS}, Output Skew or Common Edge Skew Skew parameter to observe propagation delay differences in applications requiring synchronous data/clock operations.
tps PIn Skew or Transition Skew: $t_{PS} = t_{PHL_j} - t_{PLH_j} $ Both HIGH-to-LOW and LOW-to-HIGH propagation delays are measured at each output pin across the given device. T_{PS} is the maximum difference for outputs I = 1 8 to within a device package.	clock input 50% duty cycle output 1 $\frac{1}{p_{1}h_{1}}$ $\frac{1}{p_{2}}$ $\frac{1}{p_{1}h_{2}}$ $\frac{1}{p_{2}}$ $\frac{1}{p_{1}h_{2}}$ $\frac{1}{p_{2}}$ $\frac{1}{p_{1}h_{2}}$	 tp_S, Pin Skew or Transition Skew Skew parameter to observe duty cycle degradation of any output signal (pin).