

# 20mA Air-Core Tachometer Drive Circuit

# Description

The CS289 is specifically designed for use with air-core meter movements. The IC has charge pump circuitry for frequency-to-voltage conversion, a shunt regulator for stable

## operation, a function generator, and sine and cosine amplifiers. The buffered sine and cosine outputs will typically sink or source 20mA.

### Absolute Maximum Ratings

| Supply Voltage (V <sub>CC</sub> ) |  |
|-----------------------------------|--|
| Operating Temperature             |  |
| Junction Temperature              |  |
| Storage Temperature               |  |
| Lead Temperature Soldering        |  |
|                                   |  |

**Block Diagram** 

Wave Solder (through hole styles only).....10 sec. max, 260°C peak Reflow (SMD styles only).....60 sec. max above 183°C, 230°C peak





Cherry Semiconductor Corporation 2000 South County Trail, East Greenwich, RI 02818 Tel: (401)885-3600 Fax: (401)885-5786 Email: info@cherry-semi.com Web Site: www.cherry-semi.com

# Features

- Single Supply Operation
- On-Chip Regulation
- 20mA Output Drive Capability

# **Package Options**

 Uz
 Pwr Gnd

 VsiNE
 Vcc

 NC
 Vcos

 VBIAS
 VREG

 Cp SqIN

 Cp+
 SqUT

 Gnd
 F/Vout

# 20L SOIC Wide (internally fused leads) Vz T Vcc Vsine Vccs VBIAS O Reg Gnd O Gnd

|                                            | Electrical Characteristics: $(V_{CC} = 13.1V)$                                    | , -30°C ≤ T | <sub>A</sub> ≤ 85°C) |             |                |
|--------------------------------------------|-----------------------------------------------------------------------------------|-------------|----------------------|-------------|----------------|
| PARAMETER                                  | TEST CONDITIONS                                                                   | MIN         | ТҮР                  | MAX         | UNIT           |
| Supply Current (Note 2)                    | $V_{CC} = 15.0V$ $V_{CC} = 13.1V$ $V_{CC} = 11.3V$                                |             | 54<br>60<br>60       | 65<br>65    | mA<br>mA<br>mA |
| Regulated Voltage                          | $I_{REG} = 4.3 m A$                                                               | 7.7         | 8.5                  | 9.3         | V              |
| Regulation                                 | $I_{REG} = 0$ to 5mA                                                              |             | 0.10                 | 0.20        | V              |
| Signal Input Current<br>Saturation Voltage | $T = 25^{\circ}C$ $I_{SQ} OUT = 5mA, I_{SQ} IN = 500 \mu A$                       | 0.1         | 2.0<br>0.20          | 4.0<br>0.55 | mA<br>V        |
| Leakage Current                            | $I_{SQ} \ OUT = 16V, \ V_{SQ} \ IN = 0V$                                          |             |                      | 10          | μΑ             |
| Input Current                              | $C_{P}+=0, T=25^{\circ}C$                                                         |             | 1                    | 15          | nA             |
| F to V Output                              | $V_{SQ}IN = 0$ (zero input), $\emptyset = 0^{\circ}$                              | 1.8         | 2.1                  | 2.4         |                |
|                                            | $V_{COS} = 0$ (Note 1), $\emptyset = 270^{\circ}$                                 | 6.3         | 7.1                  | 7.9         | V              |
| Linearity                                  | $E_O$ vs. Frequency<br>$V_{COS} = 0$ (Note 1), $\emptyset = 270^\circ$ , T = 25°C | -1.5        |                      | 1.5         | %              |
| $V_{sine} at \varnothing = 0^{\circ}$      | $V_{SQ}  IN$ = 0 (zero input), $\varnothing$ = 0°                                 | -0.55       | 0.00                 | 0.55        | V              |
| $MAX \ V_{sine+}$                          | $V_{COS} = 0$ (Note 1), $\emptyset = 90^{\circ}$                                  | 3.8         | 4.5                  | 5.8         | V              |
| MAX V <sub>sine-</sub>                     | $V_{COS} = 0$ (Note 1), $\emptyset = 270^{\circ}$                                 | -3.8        | -4.5                 | -5.8        | V              |
| Coil Drive Current                         | $V_{COS} = 0$ (Note 1), $\emptyset = 90^{\circ}$ , $T = 25^{\circ}C$              |             | 20                   | 25          | mA             |
|                                            | $V_{COS} = 0$ (Note 1), $\emptyset = 270^{\circ}$                                 |             | 20                   | 25          | mA             |
| MAX V <sub>COS+</sub>                      | $V_{SQ}IN$ = 0 (zero input), $\varnothing$ = 0°                                   | 3.8         | 4.5                  | 5.8         | V              |
| MAX V <sub>COS-</sub>                      | $V_{sine} = 0$ (Note 1), $\emptyset = 180^{\circ}$                                | -3.8        | -4.5                 | -5.8        | V              |
| Coil Drive Current                         | $V_{SQ}IN$ = 0 (zero input), $\varnothing$ = 0°                                   |             | 20                   | 25          | mA             |
|                                            | $V_{sine} = 0$ (Note 1), $\emptyset = 180^{\circ}$                                |             | 20                   | 25          | mA             |
| External Voltage Ref.                      |                                                                                   | 4.98        | 5.40                 | 5.85        | V              |

Note 1:  $V_{sine}$  measured  $V_{sine}$  to  $V_Z$ .  $V_{COS}$  measured  $V_{COS}$  to  $V_Z$ . All other voltages specified are measured to ground. Note 2: Max PWR dissipation  $\leq V_{CC} \times I_{CC} - (V_2 I_{sine} + V12 I_{COS})$ .

| Package Pin Description       |          |                    |                                                        |
|-------------------------------|----------|--------------------|--------------------------------------------------------|
| PACKAGE PIN                   | N #      | PIN SYMBOL         | FUNCTION                                               |
| 20L SO                        |          |                    |                                                        |
| (internally fused leads)      | 14L PDIP |                    |                                                        |
| 1                             | 1        | $V_Z$              | External Zener reference.                              |
| 2                             | 2        | V <sub>sine</sub>  | Sine output signal.                                    |
| 3                             | 4        | V <sub>BIAS</sub>  | Test pin or "0" calibration pin.                       |
| 4, 5, 6, 7,<br>14, 15, 16, 17 | 7        | Gnd                | Analog Ground connection.                              |
| 8                             | 5        | C <sub>P-</sub>    | Negative input to charge pump.                         |
| 9                             | 6        | C <sub>P+</sub>    | Positive input to charge pump.                         |
| 10                            | 3        | NC                 | No Connection                                          |
| 11                            | 8        | F/V <sub>OUT</sub> | Output voltage proportional to input signal frequency. |

| Package Pin Description: continued |           |                    |                                     | CS2 |
|------------------------------------|-----------|--------------------|-------------------------------------|-----|
| РАСК                               | AGE PIN # | PIN SYMBOL         | FUNCTION                            | 88  |
| 20L SO                             | 14L PDIP  |                    |                                     |     |
| 12                                 | 9         | S <sub>Q</sub> OUT | Buffered square wave output signal. |     |
| 13                                 | 10        | S <sub>Q</sub> IN  | Speed or RPM input signal.          |     |
| 18                                 | 11        | V <sub>REG</sub>   | Voltage regulator output.           |     |
| 19                                 | 12        | V <sub>COS</sub>   | Cosine output signal.               |     |
| 20                                 | 13        | V <sub>CC</sub>    | Supply voltage.                     |     |
|                                    | 14        | Pwr Gnd            | Power Ground connection.            |     |

Note 1:  $V_{sine}$  measured  $V_{sine}$  to  $V_Z$ .  $V_{COS}$  measured  $V_{COS}$  to  $V_Z$ . All other voltages specified are measured to ground. Note 2: Max PWR dissipation  $\leq V_{CC} \times I_{CC} - (V_2 I_{sine} + V12 I_{COS})$ .





#### **Circuit Description**

#### Charge Pump

The input frequency is buffered through a transistor, then applied to the charge pump for frequency-to-voltage conversion (Figure 1). The charge pump output voltage, EØ, will range from 2.1V with no input ( $\emptyset$ = 0°) to 7.1V at Ø = 270°. The charge that appears on C<sub>T</sub> is reflected to C<sub>OUT</sub> through a Norton amplifier. The frequency applied at S<sub>Q</sub>IN charges and discharges C<sub>T</sub> through R<sub>1</sub> and R<sub>2</sub>. C<sub>OUT</sub> reflects the charge as a voltage across resistor R<sub>T</sub>.

Function Generator/Sine and Cosine Amplifiers

The output waveforms of the sine and cosine amplifiers are derived by On-Chip Amplifier/Comparator circuitry. The various trip points for the circuit (i.e. 90°, 180°, 270°) are determined by an internal resistor divider connected to the voltage regulator. The voltage EØ is compared to the divider network by the function generator circuitry. Use of an external zener reference at V<sub>z</sub> allows both sine and cosine amplifiers to swing positive and negative with respect to this reference. The output magnitudes and directions have the relationship as shown in Typical Characteristics diagrams.

Note: Pin connections referenced are for the 14L DIP.



Figure 1. Functional Diagram of CS289 Circuit.

$$\label{eq:V_four} \begin{split} V_{\text{F/V}_{\text{OUT}}} = 2.1 + & \text{Frequency x } C_T \text{ x } R_T \ (V_{\text{REG}} \text{ -} 0 \text{ .} 7) \end{split}$$
 The above equations were used in calculating the following values, where  $V_{\text{F/V}_{\text{OUT}}} = 7.1 V \text{ at } = 270^\circ \text{ and } C_T = 0.01 \text{ F}. \end{split}$ 

4 cylinder: Freq = 200Hz, R<sub>T</sub> = 320k $\Omega$ 6 cylinder: Freq = 300Hz, R<sub>T</sub> = 220k $\Omega$ 8 cylinder: Freq = 400Hz, R<sub>T</sub> = 150k $\Omega$ 



Figure 2: Alternate Trimming Method

Typical values shown above apply to a nominal value of  $V_{REG}$  of 8.5 volts. It must be realized that trimming of  $R_T$  will be necessary to compensate for variations in regulator voltage from one unit to another.

CS289

An alternative to this adjustment is to replace  $R_2$  with a potentiometer, as shown in Figure 2.

Partial schematic shown in Figure 3 represents one method for use with DC applications instead of frequency.



**Figure 3: DC Application** 

# **Package Specification**

## PACKAGE DIMENSIONS IN mm (INCHES)

|                                         |       | D<br>Metric Engli |      |       |
|-----------------------------------------|-------|-------------------|------|-------|
| Lead Count                              | M     |                   |      | glish |
|                                         | Max   | Min               | Max  | Min   |
| 14L PDIP                                | 19.69 | 18.67             | .775 | .735  |
| 20L SO Wide<br>(internally fused leads) | 13.00 | 12.60             | .512 | .496  |

#### PACKAGE THERMAL DATA

| Therm           | nal Data | 14L<br>PDIP Wide | <b>20L SOIC</b> (internally fused leads) |      |
|-----------------|----------|------------------|------------------------------------------|------|
| $R_{\Theta JC}$ | typ      | 48               | 17                                       | °C/W |
| $R_{\Theta JA}$ | typ      | 85               | 90                                       | °C/W |







#### **Ordering Information**

| Part Number  | Description                                                                  |
|--------------|------------------------------------------------------------------------------|
| CS289GDWF20  | 20 Lead SO Wide (internally fused leads)                                     |
| CS289GDWFR20 | 20 Lead SO Wide ( <i>internally fused leads</i> ) ( <i>tape &amp; reel</i> ) |
| CS289GN14    | 14 Lead PDIP                                                                 |

Cherry Semiconductor Corporation reserves the right to make changes to the specifications without notice. Please contact Cherry Semiconductor Corporation for the latest available information.