Voltage Mode PWM Control Circuit with 200 mA Output Drivers

The CS3524A PWM control circuit retains the same versatile architecture of the industry standard CS3524 (SG3524) while adding substantial improvements.

The CS3524 is pin–compatible with "non–A" versions, and in most applications can be directly interchanged. The CS3524A, however, eliminates many of the design restrictions which had previously required additional external circuitry.

The CS3524A includes a precision 5.0 V reference trimmed to $\pm 1\%$ accuracy (eliminating the need for potentiometer adjustments), an error amplifier with an output voltage swing extending to 5.0 V, and a current sense amplifier useful in either the ground or power supply output lines. The uncommitted 60 V, 200 mA NPN output pair greatly enhances the output drive capability.

The CS3524A features an undervoltage lockout circuit which disables all internal circuitry (except the reference) until the input voltage has risen to 8.0 V. This holds standby current low until turn–on, and greatly simplifies the design of low power, off–line supplies. The turn–on circuit has approximately 600 mV of hysteresis for jitter free activation.

Other improvements include a PWM latch that insures freedom from multiple pulsing within a period, even in noisy environments; logic to eliminate double pulsing on a single output, a 200 ns external shutdown capability, and automatic thermal protection from excessive chip temperature. The oscillator circuit is usable to 500 kHz and is easier to synchronize with an external clock pulse.

Features

- Precision Reference Internally Trimmed to $\pm 1\%$
- Current Limit
- Undervoltage Lockout
- Start–Up Supply Current < 4.0 mA
- Output to 200 mA
- 60 V Output Capability
- Wide Common–Mode Input Range for Error and Current Limit Amplifiers
- PWM Latch Insures Single Pulse per Period
- Double Pulse Suppression
- 200 ns Shutdown
- Guaranteed Frequency
- Thermal Shutdown

ON Semiconductor**

http://onsemi.com

PIN CONNECTIONS

EA- EA+ SYNC ISENSE+ ISENSE- RT C-] V _{REF}] V _{IN}] E _B] V _{OUTB}] V _{OUTA}] E _A

ORDERING INFORMATION

Device	Package	Shipping
CS3524AGN16	DIP-16	25 Units/Rail
CS3524AGDW16	SO-16L	46 Units/Rail
CS3524AGDWR16	SO-16L	1000 Tape & Reel

Figure 1. Block Diagram

ABSOLUTE MAXIMUM RATINGS*

Rating	Value	Unit
Supply Voltage (V _{IN})	40	V
Collector Supply Voltage (V _{CC})	60	V
Output Current (Each Output)	200	mA
Reference Output Current	50	mA
Oscillator Charging Current	5.0	mA
Power Dissipation at $T_A = 25^{\circ}C$	1000	mW
Power Dissipation at T _J = +25°C Derate for Case Temperature above +25°C	2000 16	mW mW/°C
Storage Temperature Range	–65 to +150	°C
Lead Temperature Soldering Wave Solder (through hole styles only) Note Reflow (SMD styles only) Note		°C °C

1. 10 seconds max.

2. 60 seconds max above $183^{\circ}C$

*The maximum package power dissipation must be observed.

ELECTRICAL CHARACTERISTICS	$(0^{\circ}C \le T_A \le +70^{\circ}C, V_{IN} = V_{CC} = 20 V$; unless otherwise specified.)
----------------------------	---

Characteristic	Test Conditions	Min	Тур	Мах	Unit
Turn–On Characteristics			•	•	
Input Voltage	Operating Range after Turn–On	8.0	-	40	V
Turn-On Threshold	-	5.5	7.5	8.5	V
Turn–On Current	V _{IN} Turn–On – 100 mV	-	2.5	4.0	mA
Operating Current	V _{IN} = 8.0 to 40 V	-	5.0	10	mA
Turn–On Hysteresis (Note 3)	-	-	0.6	-	V
Reference Section					•
Output Voltage	$T_A = 25^{\circ}C$	4.9	5.0	5.2	V
Line Regulation	V _{IN} = 10 to 40 V	-	10	30	mV
Load Regulation	I _L = 0 to 20 mA	-	20	50	mA
Temperature Stability (Note 3)	Over Operating Range	-	20	50	mV
Short Circuit Current	V _{REF} = 0, T _A = 25°C	-	80	100	mA
Output Noise Voltage (Note 3)	10 Hz \leq f \leq 10 kHz, T _A = 25°C	-	40	-	μV _{RMS}
Long Term Stability (Note 3)	T _A = 125°C, 1000 Hrs.	-	20	50	mV
Oscillator Section	R _T = 2700 Ω, C _T = 0.01 μF; unless other	vise specified			
Initial Accuracy	$T_A = 25^{\circ}C$	39	43	47	kHz
Temperature Stability (Note 3)	Over Operating Temperature Range	-	1.0	2.0	%
Minimum Frequency	R _T = 150 kΩ, C _T = 0.1 μF	-	-	120	Hz
Maximum Frequency	R _T = 2.0 kΩ, C _T = 470 pF	500	-	-	kHz
Output Amplitude (Note 3)	T _A = 25°C	_	3.5	-	V
Output Pulse Width (Note 3)	T _A = 25°C	-	0.5	-	μs
Ramp Peak	-	3.3	3.5	3.7	V
Ramp Valley	-	0.7	0.9	1.0	V
Error Amplifier Section	V _{CM} = 2.5 V; unless otherwise specified	1	•	1	1
Input Offset Voltage	-	-	2.0	10	mV
Input Bias Current	-	-	1.0	10	μΑ
Input Offset Current	-	-	0.5	1.0	μΑ
Common Mode Rejection Ratio	V _{CM} = 1.5 to 5.5 V	60	75	-	dB
Power Supply Rejection Ratio	V _{IN} = 10 to 40 V	50	60	-	dB
Output Swing	Minimum Total Range	0.5	-	5.0	V
Open Loop Voltage Gain	ΔV_{OUT} = 1.0 to 4.0 V, $R_L \ge$ 10 $M\Omega$	60	80	_	dB
Gain-Bandwidth (Note 3)	$T_A = 25^{\circ}C, A_V = 0 dB$	-	3.0	-	MHz
Current Limit Amplifier	V _{SENSE} = V _O ; unless otherwise specified	d	•	-	1
Input Offset Voltage	T _A = 25°C, EA Set for Max. Output	180	200	220	mV
Input Offset Voltage	Over Operating Temperature Range	170	-	230	mV
Input Bias Current	-	-	-1.0	-10	μΑ
Common Mode Rejection Ratio	V _{SENSE} = 0 to 15 V	50	60	-	dB
Power Supply Rejection Ratio	V _{IN} = 10 to 40 V	50	60	_	dB

3. These parameters are guaranteed by design but not 100% tested in production.

Characteristic	Test Conditions	Min	Тур	Max	Unit
Current Limit Amplifier (continued)	V _{SENSE} = V _O ; unless otherwise specified	d		•	
Output Swing	Minimum Total Range	0.5	-	5.0	V
Open Loop Voltage Gain	ΔV_{OUT} = 1.0 to 4.0 V, R _L \ge 10 M Ω	70	80	-	dB
Delay Time (Note 4)	ΔV _{IN} = 300 mV	-	300	-	ns
Output Section (Each Output)					
Collector Emitter Voltage	I _C = 100 μA	60	80	-	V
Collector Leakage Current	V _{CE} = 50 V	-	0.1	20	μΑ
Saturation	I _C = 20 mA I _C = 200 mA		0.2 1.0	0.4 2.2	V V
Emitter Output Voltage	I _E = 50 mA 17	17	18	-	V
Rise Time (Note 4)	$T_{A} = 25^{\circ}C, R = 2.0 \text{ k}\Omega$	-	200	-	ns
Fall Time (Note 4)	$T_{A} = 25^{\circ}C, R = 2.0 \text{ k}\Omega$	-	100	-	ns
Comparator Delay (Note 4)	$T_A = 25^{\circ}C$, V_{COMP} to V_{OUT}	-	300	-	ns
Shutdown Delay (Note 4)	$T_A = 25^{\circ}C$, V_{SHUT} to V_{OUT}	-	200	-	ns
Shutdown Threshold	$T_A = 25^{\circ}C$, $R_C = 2.0$ kΩ	0.5	0.7	1.0	V
Thermal Shutdown (Note 4)	-	-	165	_	°C

4. These parameters are guaranteed by design but not 100% tested in production.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Duty Cycle vs. Input Voltage

Figure 8. Current Limit Amplifier Delay

Figure 9. Turn–Off Delay from Shutdown

Figure 10. Output Saturation Voltage vs. Output Current Over Temperature

Figure 11. Open Loop Test Circuit

Note: The CS3524A should be able to be tested in any 3524 test circuit with two possible exceptions:

- 1. The higher gain–bandwidth of the current limit amplifier in the CS3524A may cause oscillations in an uncompensated 3524 test circuit.
- 2. The effect of the shutdown cannot be seen at the compensation terminal, but must be observed at the outputs.

PACKAGE THERMAL DATA

Parameter		DIP-16	DIP-16 SO-16L	
$R_{\Theta JC}$	Typical	42	23	°C/W
$R_{\Theta JA}$	Typical	80	105	°C/W