Low Power, 400MHz High Speed Triple Buffer

CVA4401

FEATURES

Slew Rate	. 11000V/μs
Wide Bandwidth	400MHz
Output Current	150mA
Wide Supply Voltage	\pm 3V to \pm 18V
Supply Current	
Short Circuit Product	
Low Bias Current	

APPLICATIONS

- CRT Amplifier Drivers
- Coaxial Cable Driver

GENERAL DESCRIPTION

The CVA4401 is a low power, wide bandwidth triple buffer amplifier. The CVA4401 delivers a -3dB bandwidth of 400MHz, 150mA, and 11000V/ μ s while only drawing 5mA of supply current. The CVA4401 operates over a wide supply voltage range of \pm 5V to \pm 18V.

This product is an excellent choice for driving the video signal from Pre-Amp active load CRT driver.

ORDERING INFORMATION

Part	Package	Temperature Range
CVA4401	Plastic Dip 16 Lead	-20°C to +100°C

CVA4401

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage ±20V
Input Voltage ±Vsupply
Storage Temperature Range
Lead Temperature
(Soldering 10 seconds) 260°C
Power Dissipation (Note 4)

ESD Tolerance (Note 3).	±2000V
Thermal Resistance (θ_{JA})	
N Package	95°C/W
Thermal Resistance (θ_{JC})	
N Package	50°C/W
Maximum Junction Temperature	. 150°C

DC ELECTRICAL CHARACTERISTICS

The following specifications apply for Supply Voltage = ± 12 V, V_{CM} = 0, R_L ≥ 100 K Ω and R_S = 50 Ω unless otherwise noted.

SYMBOL	CHARACTERISTICS	ТҮР	Limit (Note 5)	UNITS	CONDITIONS
A _{V1}	Voltage Gain 1	0.99	0.96	V/V Min	$R_L = \infty, V_{IN} = \pm 10V$
A _{V2}	Voltage Gain 2	0.95	0.90	V/V IVIIII	$R_L=100\Omega, \ V_{IN}=\pm 10V$
Vos	Offset Voltage	10	50	mV Max	R _L = ∞
IB	Input Bias Current	1	25	μA Max	$R_L = \infty$
R _{IN}	Input Resistance	0.5		MΩ	$R_L = 100\Omega$
C _{IN}	Input Capacitance	3.5		pF	
Ro	Output Resistance	3	10	Ω Max	$R_L = 100\Omega, \ V_{IN} = \pm 2V$
Is	Supply Current	5	7.5	mA Max	$R_L = \infty$
Vo	Output Swing	8	8	±V Min	$R_L = 100\Omega, V_{IN} = \pm 10V$
lout	Output Current	150	100	mA	V _{IN} = 10V

AC ELECTRICAL CHARACTERISTICS

The following specifications apply for Supply Voltage = $\pm 12V$, V_{CM} = 0, R_L $\geq 100K\Omega$ and R_S = 50 Ω unless otherwise noted.

SYMBOL	CHARACTERISTICS	ТҮР	Limit (Note 5)	UNITS	CONDITIONS
SR1	Slew Rate 1	11000	8000	V/µs	$V_{IN} = \pm 10V$, $R_L = 100\Omega$ (Note 2)
SS _{BW}	Small Signal Bandwidth	400	200	MHz	$V_{IN} = \pm 100 m V_{PP}, R_L = 100 \Omega$ $C_L \le 10 p F$
P _{BW}	Power Bandwidth	100			
tr, tf	Rise Time Fall Time	1.2	1.7	ns	$\begin{array}{l} R_L = 100\Omega, \ C_L \leq 10 p F \\ V_{IN} = 0.5 V \end{array}$
t _{pd}	Propagation Delay Time	2.0		ns	$\begin{array}{l} R_L = 100\Omega, \ C_L \leq 10 p F \\ V_{IN} = 0.5 V \end{array}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.

Note 2: Slew rate is measured with 50Ω source impedance at 25° C. Slew rate is measured between V_O = +5V and -5V.

Note 3: The test circuit consists of the human body model of 120pF in series with 1500Ω.

Note 4: The maximum power dissipation is a function of T_{J(max)}, θ_{JA} and T_A. The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$.

Note 5: Limits are guaranteed by testing, correlation or periodic characterization.

Information furnished by Calogic is believed to be accurate and reliable. However, no responsibility is assumed for its use: nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of Calogic.