SONY® CXA1114P/M/CXA1434P # Audio Video Switch Compatible with I2C Bus #### Description The CXA1114P and CXA1434P are bipolar ICs developed as audio video switches for the I²C bus. #### **Features** - Serial control through I²C bus - 4 channels for input and 3 channels for output - The 3 channels for output are respectively independent and allow for input selection at will - Video and audio switches are independently controllable - Corresponds to mutual dubbing and simultaneous broadcasting - Built-in amplifier with gain = 6 dB for both video and audio systems - Wide band video amplifier (15 MHz 3dB) - Slave address for CXA1114 and CXA1434 differ CXA1114: 90н, CXA1434: 96н #### **Functions** Input channels (Video input 4 channels Audio input, STEREO 4 channels Output channels | Video output 3 channels Audio output, STEREO 3 channels Each output features a built-in 6dB gain amplifier. Output at the 3 channels can independently select an input at will. # Structure Bipolar silicon monolithic IC ### Absolute Maximum Ratings (Ta=25°C) Supply voltage Operating temperature Vcc 12 V Topr -20 to +75 °C Storage temperature Allowable power dissipation Tstg -65 to +150 °C 830 mW (CXA1114P/CXA1434P) 570 mW (CXA1114M) # Operating Supply Voltage Range Vcc +8 to +10 V Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. # **Block Diagram** ### Pin Configuration (Top View) ### Pin Description | No. | Symbol | Voltage | Equivalent circuit | Description | |-------------------|---|---------|-------------------------------------|---| | 1 | BIAS | 4.6V | Vcc 150 20. 5 k 150 20. 5 k | Builds up Vcc/2 that becomes the internal bias reference. Supply ripple is suppressed by installing a capacitor. Cut off frequency is supplied through, $fo = \frac{1000}{2\pi \times 11 \times C \; (\mu F)} [Hz]$ | | 2
4
6
28 | VIDEO 1 IN
VIDEO 2 IN
VIDEO 3 IN
TV.VIDEO IN | 4.5V | 10.5k 5.2v 10.5k 5.2v 10.5k 350 4 | Video 1, 2, 3, and TV video input pins | | 3 | Vcc | 9.0V | | Power supply pin | | No. | Symbol | Voltage | Equivalent circuit | Description | |---|---|---------|--|---| | 5
24
27 | GND(AUDIO)
GND(DIGITAL)
GND(VIDEO) | | · | Audio, digital and video
GND pins | | 7
8
9
10
11
12
13
14 | AUDIO 1 IN(L) AUDIO 1 IN(R) AUDIO 2 IN(L) AUDIO 2 IN(R) AUDIO 3 IN(L) AUDIO 3 IN(R) TV AUDIO IN(L) TV AUDIO IN(R) | 4.6V | 32. 7k 32 | Input pins for 1,2,3
audio, the TV audio and
their respective L and R
channels | | 15
16
17
18
19
20 | TV AUDIO OUT(L) TV AUDIO OUT(R) AUDIO 1 OUT(L) AUDIO 1 OUT(R) AUDIO 2 OUT(L) AUDIO 2 OUT(R) | 4.6V | (S) | Output pins for 1,2
audio, the TV audio and
their respective L and R
channels | | 21 | SCL | | 150
40 ±
40. 7k | SCL (Serial Clock Line)
of I ² C bus standards.
Threshold level is set to
approx. 2.3V. | | 22 | SDA | | 147
147
147
147
147
147
140. 7 H | SDA (Serial Data Line)
of I ² C bus standards.
Threshold level is set to
approx. 2.3V. | | No. | Symbol | Voltage | Equivalent circuit | Description | |----------------|--|---------|--------------------|--| | 23
25
26 | TV VIDEO OUT
VIDEO 1 OUT
VIDEO 2 OUT | 4.5V | Vc 5 | Output pins for TV video, video 1 and video 2. | # SONY ### **Electrical Characteristics** (Ta=25°C, Vcc=9V See Fig. 1 to 10) | Item | Symbol | Conditions | Min. | Тур. | Max. | Unit | |---------------------|--------|---------------------------------------|------|------|------|------| | Consumption current | lcc | Vcc=9V, No signal, No load
(Fig.1) | 20 | 35 | 50 | mA | | BIAS | Vcc/2 | Vcc=9V, No signal, No load | 4.2 | 4.6 | 5.0 | V | # (Video system) | I/O pin voltage | Vvpin | Vcc=9V, No signal, No load | 4.1 | 4.5 | 4.9 | ٧ | |---------------------------------------|-------|---|-----|-----|----------|------| | F | | With input at 0.3 Vp-p and output at 100 kHz set to 0 dB. | | | | | | Frequency
characteristics | Fbwv | Test input frequency when output level reaches –3 dB. (Fig.2) | 10 | 15 | <u> </u> | MHz | | Gain | GVv | f=100kHz, 0.3Vp-p input (Fig.2) | 5.5 | 6.0 | 6.5 | dB | | Input dynamic range | Vdv | At 100 kHz max input level when distortion < 1.0% (Fig.2) | 2.0 | 3.0 | | Vp-p | | Crosstalk
between video
outputs | Vctv | f=4.43MHz, 1Vp-p input (Fig.2) | _ | 55 | -50 | dB | | Input
resistance | Rinv | Tested at DC (Fig.5) | 7 | 11 | 15 | kΩ | | Ripple rejection ratio | RRv | f=100Hz, 0.3Vp-p added to Vcc
(Fig.7) | | -35 | -30 | dB | | Output impedance | Rov | f=100kHz, 5Vp-p input (Fig.3) | | 12 | 30 | Ω | # (Audio system) | I/O pin voltage | V _A pin | Vcc=9V, no signal, No load | 4.4 | 4.6 | 4.7 | V | |---------------------------------------|--------------------|--|-----|------|------------|------| | Frequency characteristics | Fbwa | With 1Vp-p input, 1kHz output as 0dB, an input frequency where –3dB is obtained. (Fig.9) | 100 | | | kHz | | Gain | GVA | f=1kHz, 1Vp-p input (Fig.9) | 5.5 | 6.0 | 6.5 | dB | | Total
harmonic
distortion | THD | f=1kHz, 2.2Vp-p input (Fig.8) | | 0.06 | 0.2 | % | | Input dynamic range | Vda | At 1 kHz max input level when distortion < 1.0% (Fig.9) | 2.8 | 3.0 | | Vp-p | | Crosstalk
between audio
outputs | Vcta | f=1kHz, 1Vp-p input (Fig.9) | - | -90 | -75 | dB | | Input resistance | Rina | Tested at DC (Fig.6) | 25 | 30 | 40 | ΚΩ | | Ripple rejection ratio | RRA | f=100Hz, 0.3Vp-p added to Vcc (Fig.7) | _ | -50 | -40 | dB | | Output impedance | Ro₄ | f=1kHz, 5Vp-p input (Fig.4) | _ | 12 | 30 | Ω | # SONY CXA1114P/M/CXA1434P | Output DC offset | i war | Offset with regards to mute in respective modes. (Fig.9) | _ | 6.0 | 25.0 | mV | |------------------|-------|---|---|-----|------|----| | Residual noise | VIIA | fcL=300Hz, fcH=19kHz, 40dB
amplifier connected. (Fig.10) | _ | 0.8 | 5.0 | mV | # (Logic system) Fig.11 | High level input voltage | Viн | | 3.0 | _ | 5.0 | V | |---|--------------|-------------------------|-----|---|-----|-----| | Low level input voltage | VIL | | 0 | _ | 1.5 | V | | Low level output voltage | Vol | During SDA, 3mA flow in | 0 | _ | 0.4 | V | | Clock
frequency | fscL | | 0 | _ | 100 | kHz | | Min, waiting
time for data
modification | t BUF | | 4.7 | _ | _ | μѕ | | Min. waiting
time for start
of data
transfer | tho;sta | | 4.0 | _ | | με | | Low level
clock pulse
width | tLOW | | 4.7 | _ | | μs | | High level
clock pulse
width | thigh | | 4.0 | _ | _ | μs | | Min. waiting
time for start
preparation | tsu;sta | | 4.7 | _ | _ | μѕ | | Min. data hold
time | thd;dat | | 5 | _ | _ | μs | | Min. data
preparation
time | tsu;DAT | | 250 | - | | ns | | Rise time | ta | | | _ | 1 | μs | | Fall time | tr | | _ | | 300 | ns | | Min. stop
reparation
time | tsu;sto | | 4.7 | _ | | μs | ### **Electrical Characteristics Test Circuit** Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 Fig. 9 Fig. 10 SONY CXA1114P/M/CXA1434P # I²C BUS Control signal Fig. 11 #### Operation The CXA1114 and CXA1434 are used for audio and video selection. These IC's feature 4 channels for video input, 4 for audio stereo input, 3 channels for video output and 3 for audio stereo output. Respective ouputs have built-in amplifiers of approx. 6dB. The respective audio and video outputs (L and R channels make a set) can independently select the desired input. This is executed through I²C bus. #### 1) I2C Bus The I²C bus (Inter IC bus) is a bus system inside the equipment developed by Philips. Start, Stop, Data transfer, Sync and Collision prevention can be executed through two lines, SDA and SCL. The output of respective ICs is either an open collector or an open drain shaped into a wired OR to form the bus line. The bus signal structure is shown below. S:Start Condition...High to Low transition of SDA when SCL is at High. P:Stop Condition...Low to High transition of SDA when SCL is at High. A:Acknowledge...Reply signal coming from slave. Data is transferred by MSB first. 8 bits in one unit. After that acknowledge (A) is set on to confirm the signal from slave. Normally slave *1 ICs take in data with the rising edge of SCL while Master *2 ICs change data with the falling edge of SCL. The actual data format of CXA1114 and CXA1434 is shown below. | S | Slave address
90н/96н | А | DATA0 | А | ĐATA1 | А | DATA2 | Α | P | |---|--------------------------|---|-------|---|-------|---|-------|---|---| | | | | | | | | | | | Slave address is proper to the IC and is assigned to each IC according to its functions. From the 8 bits the upper 7 bits are proper addresses while the last bit is allocated to R/W. This R/W bit turns to Read *3 at 1 and Write *4 at 0. For the CXA1114/CXA1434, 90H and 96H are assigned as slave addresses. (Write only as there is no Read mode.) - Slave: ICs controlled by the Master. Normally all ICs except microcomputers are slaves. - *2 Master: Indicates ICs that control, such as microcomputers and the like. - *3 Read: Mode in which Master reads out data from Slave. - *4 Write: Mode in which data is written out from Master to Slave. #### 2) Control The CXA1114/CXA1434 control is performed by writing 3 bytes of data into 3 control registers composed of 8 bits (actually 6 bits since 2 bits are empty) that control the output selection of 3 systems. First byte data performs the input selection of TV OUT, second byte data that of VIDEO1 OUT and third byte data that of VIDEO 2OUT, respectively. Slave address for CXA1114/CXA1434 is 90H/96H in write mode only. | s | Slave address
90н/96н | А | DATAO | А | DATA1 | А | DATA2 | А | Р | | |---|--------------------------|---|-------|---|-------|---|-------|---|---|---| | | | 1 | | | | | | | | ı | S: Start condition A: Acknowledge emitted by slave (CXA1114/CXA1434) P: Stop condition Structure of Respective Control Registers (DATA 0 to 2) | b7 | b 6 | bs | b4 | рз | b2 | bı | bo | |----|------------|-----|-----|----|----|-----|-----| | × | VM | VS1 | VS0 | × | AM | AS1 | AS0 | - * b7, b3 undefined - * At Power On all bits turn to "0". (Power On Reset function) #### Video switch control | VM | VS1 | VS0 | Output pin | |----|-----|-----|-----------------| | 0 | × | × | Mute (blanking) | | 1 | 0 | 0 | TV VIDEO IN | | 1 | 0 | 1 | VIDEO 1 IN | | 1 | 1 | 0 | VIDEO2 IN | | 1 | 1 | 1 | VIDEO3 IN | #### Audio switch control | AM | AS1 | AS0 | Output pin | | |----|-----|-----|-------------|--| | 0 | × | × | Mute | | | 1 | 0 | 0 | TV AUDIO IN | | | 1 | 0 | 1 | AUDIO1 IN | | | 1 | 1 | 0 | AUDIO2 IN | | | 1 | 1 | 1 | AUDIO3 IN | | #### 3) Control Data Example | Inpu
Output pin | t selection | Video input | Audio input | | |--------------------------|-------------|-------------|---------------|--| | TV·Video } ouptut | | Video 1 | TV sound | | | Video 1
Video 1 sound | output | Video 2 | Video 1 sound | | | Video 2
Video 2 sound | output | Video 3 | Video 2 sound | | To select the above the control codes to be used are | TV·Video
TV sound | output | 101 | 100 | | |--------------------------|--------|-----|-----|--------------| | Video 1
Video 1 sound | output | 110 | 101 | control code | | Video 2
Video 2 sound | output | 111 | 110 | | For the I²C bus, after the slave adress 90H/96H for CXA1114/ CXA1434, the 3 bytes data transfer is performed: (x bit is not defined. Either 1 or 0 will do.) $$\times$$ 101 \times 100 \times 110 \times 101 \times 111 \times 110 \times 111 \times 110 \times third byte \longrightarrow That is for CXA1114 90н, 90h, 54h, 65h, 76h (When x=0) 90h, DCh, EDh, FEh (When x=1) or for CXA1434 96H, 54H, 65H, 76H (When ×=0) 96H, DCH, EDH, FEH (When ×=1) either can be transferred. # **Application Circuit** ### **Notes on Operations** As these ICs utilize video, audio and digital signals, the following points should be taken into consideration. - 1) On both video and audio systems, the wiring may cause crosstalk. An effective measure would be to separate input by using an earth line on the P.C.B. - 2) When control is performed through I²C bus, once it is set on, as long as there is no change in the data (with Power OFF, it is called off however), the condition at which it is set, is kept on. To avoid noise caused by SCL, SDA clocks and data transfer, it is recommended to temporarily stop the master, except during input selection. - 3) Pin 1 provides bias. By installing a capacitor here and effective suppression of power supply ripple is obtained. Here the cut off frequency obtained is $$fo=\frac{1000}{2\pi\times11\times C\ (\mu F)}\ [Hz]$$ 4) Keep the bypass capacitor for the power supply near Pin 3. #### **Characteristics Diagram** ### Audio amplifier gain vs. Frequency Video amplifier output vs. Rectangular wave input Audio amplifier output vs. Rectangular wave input Vcc=9V Ta⊭25°C — Output waveform … Input waveform # Audio amplifier distortion vs. Input amplitude #### Package Outline Unit: mm CXA1114P CXA1434P #### CXA1114M Purchase of Sony's I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specifications as defind by Philips.