SONY

CXA3185/3186N

All Band TV Tuner IC with On-chip PLL

Description

The CXA3185/3186N is a monolithic TV tuner IC which integrates local oscillator and mixer circuits for VHF band, local oscillator and mixer circuits for UHF band, an IF amplifier and a tuning PLL onto a single chip, enabling further miniaturization of the tuner.

Features

- Low noise figure
- Low power consumption (5 V, 54 mA typ.)
- On-chip tuning PLL (3-wire bus format)
- Selection of frequency steps 31.25 kHz, 50 kHz and 62.5 kHz
- On-chip 4-output band switch

Applications

- TV tuners
- VCR tuners
- CATV tuners

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta = 25 °C)

 Supply voltage 	Vcc1,Vcc2	-0.3 to +5.5	V								
	Vcc3	–0.3 to +10.0	V								
Storage temperature											
	Tstg	–55 to +150	°C								
 Allowable power dissipation 											
	PD	880	mW								
	(when m	ounted on a out	atrata)								

(when mounted on a substrate)

Operating Conditions

 Supply voltage 	Vcc1, Vcc2	4.75 to 5.3	V						
	Vcc3	4.75 to 9.45	V						
Operating temperature									
	Topr	-20 to +75	°C						

Note) Electrostatic discharge strength is weak, and care should be taken in handling this IC.

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram and Pin Configuration

—2—

Pin Description

No. Cymrust Clock input. 1 CL 2^{2} $\sqrt{2}^{2}$ 1 CL $\frac{2}{\sqrt{100k}}$ $-$ 2 DA 2^{2} $\sqrt{2}^{5k}$ 3 CE 2^{2} $\sqrt{2}^{5k}$ $\sqrt{100k}$ $\sqrt{2}^{5k}$ $-$ Data input. $\sqrt{2}^{5k}$ $-$ Data input. $\sqrt{2}^{5k}$ $\sqrt{2}^{5k}$ $\sqrt{2}^{5k}$ $\sqrt{2}^{5k}$ $-$ Data input. $\sqrt{2}^{5k}$ <	
2 DA 2 DA 3 CE 4 FMT 3 CE 4 FMT 3 CE 2 DA 2 DA 3 DA 2 DA 2 DA 3 DA 2 DA 4 DA 5 DA 4 DA 5 DA	
3 CE 3 CE 3 CE 3 Vcc3 4 FMT 30 Vcc3 30 Vcc3 1.25 (when open) 1.25 (
4 FMT 30 ↓ Vcc3 ↓ Vcc3 ↓ VL band.	
$30 \rightarrow Vcc3$ VL band.	
5 BVL 4 5 6 : Power supply of ON : Vcc3 5 6 : Vcc3 VH band.	tput for
6 BVH	
7 BU 7/7 7/7 7/7 The selected band pi	n goes
8 Vcc1 Analog circuit power	supply.
9 MIXout1 9 10 MIXout1 Mixer outputs.	
11 GND1 — Analog circuit GND. —3— —3—	

Pin No.	Symbol	Equivalent circuit	Pin voltage (V)	Description
12	MS	↓ Vcc2 ↓ 120k	1.5 (when open)	Frequency step mode selection. Five modes can be selected according to the applied voltage.
13	VHFin	→ → → → → → → → → → → → → → → → → → →	2.3 (VHF) 0 (UHF)	VHF input. The input format is unbalanced input.
14	UHFin1		0 (VHF) 2.3 (UHF)	UHF input. The input method can be
15	UHFin2	3k≹ \$3k , , , , , , , , , , , , , , , , , , ,	0 (VHF) 2.3 (UHF)	selected from balanced input or unbalanced input.
16	VOSC1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.0 (VHF) 3.1 (UHF)	External resonance circuit
18	VOSC2		3.5 (VHF) 5.0 (UHF)	connection for VHF oscillator.
17	GND			GND
19	UOSCB1		3.2 (VHF) 2.9 (UHF)	
20	UOSCE1	19 20 21 22 3k W Vcc1	— (VHF) 2.4 (UHF)	External resonance circuit
21	UOSCE2		— (VHF) 2.4 (UHF)	connection for UHF oscillator.
22	UOSCB2		3.2 (VHF) 2.9 (UHF)	

Pin	Symbol	Equivalent circuit	Pin voltage	Description
No.	-	-	(V)	-
23	Vcc2		—	PLL circuit power supply.
24	GND2			PLL circuit GND.
25	IFOUT	8 40 25 777 777 777	2.3	IF output.
26	LOCK	Vcc2 22 40k 26 777 777 777	5.0 (Lock) 0.2 (UNLock)	LOCK detection. High when locked, Low when unlocked.
27	CPE		0.6	NPN transistor connection for varicap diode drive.
28	СРО	500 500 277 20k 777 777 777 777 777 777 777	2.0	Charge pump output. Connect a loop filter.
29	REFOSC	29 10 10 10 10 10 10 10 10 10 10	4.3	Crystal connection for reference oscillator.
30	Vcc3		_	Power supply for external supply.

Electrical Characteristics

See the Electrical Characteristics Measurement Circuit.

Circuit Current

(Vcc=5 V, Ta=25 °C)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit	
Circuit current A	Alccv	Vcc1 current, Band switch output	30	41	55	mA	
	AICCV	open during VHF operation		41	55		
	Alccu	Vcc1 current, Band switch output	31	42	56	mA	
		open during UHF operation	51	42	50	IIIA	
Circuit current D	DIcc	Vcc2 current	7	11	15	mA	

OSC/MIX/IF Amplifier Block

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Conversion gain *1	CG1	VHF operation fref = 55 MHz	21	24	27	dB
	CG2	VHF operation fref = 360 MHz	22	25	28	dB
	CG3	UHF operation fRF = 360 MHz	26	29	32	dB
	CG4	UHF operation fRF = 800 MHz	27	30	33	dB
Noise figure *1, *2	NF1	VHF operation fRF = 55 MHz		12	15	dB
	NF2	VHF operation fRF = 360 MHz		11	14	dB
	NF3	UHF operation fRF = 360 MHz		8.5	12.5	dB
	NF4	UHF operation fRF = 800 MHz		9.5	13.5	dB
1 % cross	CM1	VHF operation	07	101		dDu
modulation *1, *3	CIVIT	$f_D = 55 \text{ MHz}, f_{UD} = \pm 12 \text{ MHz}$	97	101		dBµ
	0140	VHF operation	00	100		ما D
	CM2	$f_D = 360 \text{ MHz}, f_{UD} = \pm 12 \text{ MHz}$	96	100		dBµ
	0140	UHF operation	00	00		ما D
	CM3	$f_D = 360 \text{ MHz}, f_{UD} = \pm 12 \text{ MHz}$	92	96		dBµ
	CN44	UHF operation	00	00		-ID.
	CM4	$f_D = 800 \text{ MHz}, f_{UD} = \pm 12 \text{ MHz}$	88	92		dBµ
Maximum output power	Pomax	50 Ω load saturation output	+5	+10		dBm
Switch ON drift *4	∆fsw1	VHF operation fosc = 100 MHz			. 200	kHz
	DISW I	Δf from 3 s to 3 min after switch ON			±300	КПД
	Δfsw2	VHF operation fosc = 405 MHz			. 400	kHz
	DISWZ	Δf from 3 s to 3 min after switch ON			±400	KIIZ
	∆fsw3	UHF operation fosc = 405 MHz			. 400	kHz
	DISW3	Δf from 3 s to 3 min after switch ON			±400	KΠZ
	∆fsw4	UHF operation fosc = 845 MHz			. 500	kU-
	AISW4	Δf from 3 s to 3 min after switch ON			±500	kHz
Supply voltage drift	16011	VHF operation fosc = 100 MHz			. 150	L.I.I.=
*4	∆fst1	Δf when Vcc 5 V changes ±5 %			±150	kHz
	46040	VHF operation fosc = 405 MHz			. 250	L.I.I.=
	∆fst2	Δf when Vcc 5 V changes ±5 %			±250	kHz
	46-10	UHF operation fosc = 405 MHz			. 200	
	∆fst3	Δf when Vcc 5 V changes ±5 %			±200	kHz
	AfotA	UHF operation fosc = 845 MHz			. 250	
	∆fst4	Δf when Vcc 5 V changes ±5 %			±250	kHz

- *1 Measured value for untuned inputs.
- *2 Noise figure is the direct-reading value of NF meter in DSB.
- *3 Desired signal (fD) input level is -30 dBm. Undesired signal (fUD) is 100 kHz, 30 % AM.
- The measurement value is undesired signal level, it measured with a spectrum analyzer at S/I=46 dBm.
- *4 Value when the PLL is not operating.

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
CL and DA pins	1					
"H" level input voltage	Viн		3		Vcc	V
"L" level input voltage	VIL		GND		1.5	V
"H" level input current	Ін	VIH = VCC		0	-0.1	μA
"L" level input current	lı∟	VIL = GND		-1	-2	μA
CE pins	I					
"H" level input voltage	VIHE		3		Vcc	V
"L" level input voltage	VILE		GND		1.5	V
"H" level input current	Ііне	VIHE=VCC		100	130	μA
"L" level input current	IILE	VILE=GND		-30	-45	μA
CPO (charge pump)						
Output current	Ісро		±35	±50	±75	μA
Leak current	LeakCP				30	nA
LOCK						
"H" output voltage	Vlockh	When locked	Vcc-0.5		Vcc	V
"L" output voltage	Vlockl	When unlocked	0		0.5	V
REFOSC						
Oscillator			3		10	MHz
frequency range	Fxtosc		3		12	IVITZ
Input capacitance	Схтоѕс		17.5	19	20.5	pF
Drive level	Vxtosc		200	400		mVp-p
BVL, BVH, BU (Band	SW)					
Output current	les1	When ON			-25	mA
Saturation voltage	Vsat1	When ON Sink current = 20 mA		100	200	mV
Leak current	LeakBS1	When OFF		0.5	3	μA
FMT (Band SW)						
Output current	lbs2	When ON			-7	mA
Saturation voltage	VSAT2	When ON Sink current = 5 mA		75	150	mV
Leak current	LeakBS2	When OFF		0.03	0.1	μA
Bus timing						
Data setup time	tsp	See Timing Chart on Page 15	300			ns
Data hold time	tнd	See Timing Chart on Page 15	600			ns
Enable waiting time	twe	See Timing Chart on Page 15	300			ns
Enable setup time	tse	See Timing Chart on Page 15	300			ns
Enable hold time	tне	See Timing Chart on Page 15	600			ns

PLL Block

Electrical Characteristics Measurement Circuit

—8—

Description of Functions

The CXA3185/3186N is a terrestrial wave broadcast tuner IC which converts frequencies to IF in order to tune and detect only the desired reception frequency of VHF, CATV and UHF band signals.

In addition to the mixer, local oscillator and IF amplifier circuits required for frequency conversion to IF, this IC also integrates a PLL circuit for local oscillator frequency control onto a single chip.

The functions of the various circuits are described below.

1. Mixer circuit

This circuit outputs the frequency difference between the signal input to VHFIN or UHFIN and the local oscillation signal.

2. Local oscillator circuit

A VCO is formed by externally connecting an LC resonance circuit composed of a varicap diode and inductance.

3. IF amplifier circuit

This circuit amplifies the mixer IF output, and consists of an amplifier stage and low impedance output stage.

4. PLL circuit

This PLL circuit fixes the local oscillator frequency to the desired frequency. It consists of a prescaler, main divider, reference divider, phase comparator, charge pump and reference oscillator. The control format supports the 3-wire bus format. The following four modes can be selected according to the combination of the frequency division values of the main and reference dividers.

Mode	Main divider	Reference divider
A-0	15 bit	1024 fixed
A-1	14 bit	512 fixed
A-2	15 bit	640 fixed
A-3/4	15 bit	512 fixed

Description of Analog Block Operation

(See the Electrical Characteristics Measurement Circuit.)

VHF oscillator circuit

- This circuit is a differential amplifier type oscillator circuit. Pin 18 is the output and Pin 16 is the input. Oscillation is performed by connecting an LC resonance circuit including a varicap to Pin 18 via coupled capacitance, inputting to Pin 16 with feedback capacitance, and applying positive feedback.
- The amplifier between Pins 16 and 18 has an extremely high gain. Therefore, care should be taken to avoid creating parasitic capacitance, resistance or other feedback loops as this may produce abnormal oscillation.

VHF mixer circuit

- The mixer circuit employs a double balance mixer with little local oscillation signal leakage. The input format is base input type, with Pin 12 grounded and the RF signal input to Pin 13.
- The RF signal is inserted from the oscillator, converted to IF frequency and output from Pins 9 and 10.
- Pins 9 and 10 are open collectors, so power must be supplied externally. The electric potential of Pins 9 and 10 at this time must be DC 4.0 V or more.

UHF oscillator circuit

 This oscillator circuit is designed so that two collector ground type Colpitts oscillators perform differential oscillation operation via an LC resonance circuit including a varicap. Connect resonance capacitance which consists of colpitts oscillator between Pins 19 and 20, Pins 20 and 21, and Pins 21 and 22. Then an LC resonance circuit including a varicap diode is connected between Pins 19 and 22.

UHF mixer circuit

- This circuit employs a double balance mixer like the VHF mixer circuit.
 The input format is base input type, with Pins 14 and 15 as the RF input pins. The input method can be
- consisting of grounding Pin 14 via a capacitor and input to Pin 15.
- Pins 9 and 10 are the mixer outputs.
- Pins 9 and 10 are open collectors, so power must be supplied externally. The electric potential of Pins 9 and 10 at this time must be DC 4.0 V or more.

selected from balanced input consisting of differential input to Pins 14 and 15 or unbalanced input

IF amplifier circuit

- The signals frequency converted by the mixer are output from Pins 9 and 10, and at the same time are AC coupled inside the IC and input to the IF amplifier.
- Single-tuned filters are connected to Pins 9 and 10 in order to improve the interference characteristics of the IF amplifier.
- The signal amplified by the IF amplifier is output from Pin 25. The output impedance is approximately 75 Ω .

Description of PLL Block

The PLL on this IC supports the 3-wire bus control format.

The serial data is input to the DA, CL and CE pins. The data is loaded to the shift register at the clock rise, and latched at the enable fall.

Symbol	3-wire bus control
CE	Enable input
CL	Clock input
DA	Data input
LOCK	Lock signal output

1) Mode Setting Method

The modes for each frequency step are set according to the MS pin voltage.

Mode	MC nin voltage	Main	Reference	Reference	Frequency	Control
INIOUE	MS pin voltage	divider	divider	frequency*	step*	word length
A-0	0 to 0.15Vcc	15 bit	1024	3.90625 kHz	31.25 kHz	Total 19 bits
A-1	OPEN	14 bit	512	7.8125 kHz	62.5 kHz	Total 18 bits
A-2	0.45Vcc to 0.55Vcc	15 bit	640	6.25 kHz	50 kHz	Total 19 bits
A-3	0.65Vcc to 0.75Vcc	15 bit	512	7.8125 kHz	62.5 kHz	Total 19 bits
A-4	0.85Vcc to Vcc	15 bit	512	7.8125 kHz	62.5 kHz	Total 27 bits

* Frequency step is for when X'tal OSC = 4 MHz.

2) Programming

The VCO lock frequency is obtained according to the following formula.

 $fosc = fref \times 8 \times (32 \text{ M} + \text{S})$

fosc: local oscillator frequency

- fref : reference frequency
- 8 : prescaler fixed frequency division ratio
- M : main divider frequency division ratio
- S : swallow counter frequency division ratio

The variable frequency division ranges of M and S are as follows, and are set as binary.

 $32 \leq M \leq 1023 \; (32 \leq M \leq 511 \; \text{for A-1 mode})$

 $0 \leq S \leq 31$

• The PLL control data is comprised of the above frequency data and the band switch control data.

2-1) The CXA3185N control format is as follows.

2-1-1 : A-0/A-2/A-3 Modes (19-bit data format)

Front	bit			÷M⇔	SB												L	_SB→
BU	FMT	BVH	BVL	M9	M8	M7	M6	M5	M4	M3	M2	M1	M0	S4	S3	S2	S1	S0
-								-	-		-	-	-					

2-1-2 : A-1 Mode (18-bit data format)

Front bit			←MS	SB											L	$SB \rightarrow$
BU FN	1T BVH	BVL	M8	M7	M6	M5	M4	М3	M2	M1	M0	S4	S3	S2	S1	S0

2-1-3 : A-4 Mode (27-bit data format)

F	ront k	oit			←MS	SB												L	SB→
ſ	BU	FMT	BVH	BVL	M9	M8	M7	M6	M5	M4	М3	M2	M1	M0	S4	S3	S2	S1	S0
	Х	CP	T1	CD	Х	R1	R0	Х											

*) X: Don't care

S0 to : swallow counter frequency division ratio setting

M0 to	:	main divider frequency division ratio setting	
BVL	:	VL band switch control	(output PNP Tr ON when "1")
BVH	:	VH band switch control	(output PNP Tr ON when "1")
FMT	:	FM trap switch control	(output PNP Tr ON when "1")
BU	:	UHF band switch control	(output PNP Tr ON when "1")
СР	:	charge pump current switching	(200 μA when "1", 50 μA when "0")
T1	:	test mode selection	(when "1")
CD	:	charge pump OFF	(when "1")
R0, R	1:	reference divider frequency division ratio setting	(See the table below.)

Reference Divider Frequency Division Ratio Table

R1	R0	Reference divider
0	1	1024
1	1	512
Х	0	640

*) X: Don't care

2-2) The CXA3186N control format is as follows.

The BU and FMT data order is switched for the CXA3185N.

In this case the control format is as follows.

2-2-1: A-0/A-2/A-3 Modes (19-bit data format)

Front I	bit			÷M⇔	SB												L	_SB→
FMT	BU	BVH	BVL	M9	M8	M7	M6	M5	M4	М3	M2	M1	M0	S4	S3	S2	S1	S0

2-2-2: A-1 Mode (18-bit data format)

Front bit			₩	SB											L	SB→
FMT BU	BVH	BVL	M8	M7	M6	M5	M4	М3	M2	M1	M0	S4	S3	S2	S1	S0

2-2-3 : A-4 Mode (27-bit data format)

Front	oit			←MS	SB												L	_SB→
FMT	BU	BVH	BVL	M9	M8	M7	M6	M5	M4	M3	M2	M1	M0	S4	S3	S2	S1	S0
Х	CP	T1	CD	Х	R1	R0	Х											

*) X: Don't care

- M0 to : main divider frequency division ratio setting
- BVL : VL band switch control
- BVH : VH band switch control
- FMT : FM trap switch control
- BU : UHF band switch control
- CP : charge pump current switching
- T1 : test mode selection
- CD : charge pump OFF

R0, R1: reference divider frequency division ratio setting

(output PNP Tr ON when "1")
(200 μA when "1", 50 μA when "0")
(when "1")
(when "1")
(See the table below.)

Reference Divider Frequency Division Ratio Table

R1	R0	Reference divider
0	1	1024
1	1	512
Х	0	640

*) X: Don't care

3) 3-wire Bus Data Format

A-1 Mode (18-bit data format)

A-0/A-2/A-3 Modes (19-bit data format)

A-4 Mode (27-bit data format)

4) Bus Timing Chart

 $t_{SD} = Data setup time$ $t_{HD} = Data hold time$ $t_{SE} = Enable setup time$

 $t_{HE} = Enable bold time$ $t_{WE} = Enable waiting time$

—16—

Conversion gain vs. Reception frequency (Untuned input)

Noise figure vs. Reception frequency (Untuned input, in DSB)

Tuning Response Time

SPAN 100.0kHz SWP 30.0s

IF output [dBm]

CENTER 45.0MHz

RES BW 1.0kHz

VBW 10Hz

VHF Input Impedance

UHF Input Impedance

IF Output Impedance

Package Outline Unit : mm

PACKAGE STRUCTURE

SONY CODE	SSOP-30P-L01	
EIAJ CODE	SSOP030-P-0056	
JEDEC CODE		

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER/PALLADIUM PLATING
LEAD MATERIAL	42/COPPER ALLOY
PACKAGE MASS	0.1g

NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).