

VGA/SVGA/XGA 24-bit Transmitter

Description

The CXB1455R is the IC which transmits the 24-bit VGA/SVGA/XGA definition moving picture based on the GVIF (Gigabit Video Interface) technology.

Features

- 1 chip transmitter for serial transmission of 24-bit color VGA/SVGA/XGA picture
- On-chip PLL synthesizer
- On-chip differential cable driver
- TTL/CMOS compatible interface
- Supports 1 pixel/shift clock mode with 1 chip and 2 pixel/shift clock mode with 2 chips
- Single 3.3V power supply
- Low power consumption
- 48-pin plastic QFP package (7mm × 7mm)

Application

Gigabit video interface

Block Diagram and Pin Configuration

Structure

Bi-CMOS IC

Absolute Maximum Ratings

 Power supply 	Vcc	4.2	V
 Operating temperature 	Topr	0 to +85	°C
 Storage temperature 	Tstg	-65 to +150	°C
Allowable power dissipa	tion		
	PD	333	mW

 3.3 ± 0.3

V

Recommended Operating Condition

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Description

Power Supply/Ground

Symbol	Pin No.	Description
Vdd	12, 24, 36, 48	Logic power supply; connected to $3.3V \pm 0.3V$
GND	1, 13, 25, 37	Logic ground; connected to 0V
VccA	34	Analog power supply; connected to $3.3V \pm 0.3V$
GNDA	35	Analog ground; connected to 0V
GNDT	32	Transmission ground; connected to 0V

Digital Signal

Symbol	Pin No.	Туре	Description	Equivalent Circuit
SFTCLK	41	TTL in 1	Shift clock, for the data fetch at rising or falling edge	
RED (7 to 0)	16, 17, 18, 19, 20, 21, 22, 23			
GRN (7 to 0)	6, 7, 8, 9, 10, 11, 14, 15	TTL in 1	Pixel data. 1 pixel/shift clock input.	
BLU (7 to 0)	44, 45, 46, 47, 2, 3, 4, 5			
HSYNC	42	TTL in 1	Hsync data	
VSYNC	43	TTL in 1	Vsync data	
CNTL	39	TTL in 1	Panel control data	
DE	40	TTL in 1	Data enable	
CE	26	TTL in 2	Chip enable	
CKPOL	29	TTL in 2	SFTCLK polarity	
SDATAP/N	30, 31	Тх	Serial output and Refclk request input	VccA SDATAP SDATAN SDATAN GNDA GNDA GND

Symbol	Pin No.	Туре	Description	Equivalent Circuit
REFREQ	38	TTL out	Refclk request detection flag	

Special

Symbol	Pin No.	Description	Equivalent Circuit
REXT	33	SDATAP/N output current trimming. Connect to the external resistor.	VccA REXT VDD GNDA GND
LPFA/B	27, 28	External loop filter	VCCA

Electrical Characteristics

Table 1. Absolute Maximum Ratings

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Supply voltage	Vcc	-0.3		4.2	V	
TTL DC input voltage	VI_T	-0.5		6.5	V	
TTL H level output current	Іон_Т	-20		0	mΑ	
TTL L level output current	lo∟_T	0		20	mA	
Serial output pin voltage	Vsdout	Vcc-1.2		Vcc + 0.5	V	
Ambient temperature	Та	-55		120	°C	Under bias
Storage temperature	Tstg	-65		150	°C	

Table 2. Recommended Operating Conditions

Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply voltage (Includes VDD and VccA)	Vcc	3.0	3.3	3.6	V	
Ambient temperature	Та	0		85	°C	

Table 3. DC Characteristics (Under the recommended operating conditions. See Table 2.)

Ite	em	Symbol	Min.	Тур.	Max.	Unit	Conditions
TTL High level inp	TTL High level input voltage		2		5.5	V	
TTL Low level inp	ut voltage	VIL_T	0		0.8	V	
TTL High level inp	out current	Ін_Т			1.0	μA	VIN = VCC
TTL Low level inp	ut current	lı∟_T	-1.0			μA	VIN = 0
CE, CKPOL High	level input voltage	VIH_C	Vcc – 0.5		5.5	V	
CE, CKPOL Low I	evel input voltage	Vı∟_C	0		0.5	V	
CE, CKPOL High	CE, CKPOL High level input current				1.0	μA	VIN = VCC
CE, CKPOL Low I	CE, CKPOL Low level input current		-1.0			μA	VIN = 0
TTL High level output voltage		Vон_T	2.4			V	Іон = —8mA
TTL Low level out	put voltage	Vol_T			0.4	V	Iol = 8mA
SDATA High level	output current	Іон_SD	-0.1	0	+0.5	mA	REXT = $4.7k\Omega$
SDATA Low level output current		lo∟_SD	14.5	15.7	17	mA	KEAT = 4.7K22
SDATA High level output voltage		VIH_SD	Vcc – 0.55			V	Common mode
SDATA Low level output voltage		VIL_SD			Vcc – 0.76	V	voltage
Supply ourrest	GRAYSCALE	laa	44.0	61.0	77.0	mA	See Fig. 8 @65MHz
Supply current	WORSTCASE	lcc	50.0	71.0	92.0	mA	See Fig. 7

Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
TTL input rise time	Tir	0.7		5.0	ns	0.8 to 2.0V
TTL input fall time	Tif	0.7		5.0	ns	2.0 to 0.8V
Minimum SFTCLK frequency Maximum SFTCLK frequency	Fsftclk	65.0		25.0	MHz MHz	
SFTCLK duty factor	Dsftclk	40		60	%	Vth = 1.4V
Pixel/Sync/Cntl setup time to SFTCLK	Tsetup	2.5			ns	
Pixel/Sync/Cntl hold time to SFTCLK	Thold	2.5			ns	
SDATA rise time	Tor		200		ps	20 to 80% C = 2pE Soo Eig 2
SDATA fall time	Tof		200		ps	20 to 80%, C∟ = 2pF See Fig. 2.
Clock mode assert time	TAclk		50		ns	
Clock mode deassert time	TDclk		10		ns	
Idle mode assert time	TAidle		150		ns	
Idle mode deassert time	TDidle		100		ns	
PLL lock-in time	Tlockin		0.1		ms	

Table 4. AC Characteristics (Under the recommended operating conditions. See Table 2.)

Fig. 2. SDATA waveform measurement

Timing Chart

CNTL There must be 2 SFTCLK cycles or more left between the CNTL edge and the HSYNC, VSYNC and DE edges.

Fig. 3. TTL input timing

CE Pin Control

The CE pin should be controlled as follows.

When the power is turned ON or SFTCLK stops, or when the SFTCLK input signal falls into the disorder while the SFTCLK frequency is varied, the CE pin should be set to Low level and the CE pin should be set to High level after the SFTCLK frequency stabilizes. (Figs. 9 and 10)

Fig. 9. CE timing when power supply is turned ON

* When SFTCLK stops or the frequencies of 15MHz or less and 75MHz or more are input.

Fig. 10. CE timing when SFTCLK input signal is not stabilized

CKPOL Pin Control

The CKPOL pin selects the SFTCLK data sampling trigger edge. (See Table 5)

Table 5. SFTCLK polarity

CKPOL	SFTCLK data sampling trigger				
L	Falling edge				
н	Rising edge				

Applications

The CXB1455R GVIF transmitter is applied to the digital RGB signal transmission for

P/C with LCD monitor

Video-on-demand system

Monitoring system

Graphical controller

Projector

Digital TV monitor

Automobile Navigation System

with GVIF receivers, CXB1454R/CXB1456R.

CXB1454R/CXB1456R GVIF Receiver

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Recommended Printed Board Structure

Recommended Printed Circuit Board Pattern

Example of power supply and special signal routing

Microstrip Line

The microstrip line with the characteristic impedance of 50Ω should be used to connect the LSI transmission signal pin SDATAP/N to the connector foot printer as GVIF transmits the high-speed digital signal with the maximum speed of 2Gb/s. The optimal line can be made by forming 0.5mm pattern on L1. (See the board structure shown below.) The line lengths should be the same and the through hole should be not used. Normally, L2 should be the mat GND.

Termination Elements

Locate the 51Ω termination resistors as close to the LSI as possible.

Filter Device and Reference Resistor

The capacitor and resistor connected to LPFA/B and REXT are the filter and the reference resistor. Locate them as close to the LSI as possible. Decrease the parasitic capacitance by removing the L2 GND plane under these elements and wiring.

By-pass Capacitor

Locate a 0.1 µF chip capacitor as close to the pin as possible as shown in the Recommended Circuit Diagram.

Notes on Transmission System Configuration

The GVIF uses termination on both the transmitting and receiving ends, built-in equalizers, small amplitude differential signals, etc. in order to more easily resolve problems such as signal reflectance, signal attenuation and EMI which interfere with high-speed data transmission.

However, a number of cautions must be observed over the entire transmission system shown in the figure below in order to completely resolve these problems.

The transmission system has the following four requirements.

• Impedance matching shall be excellent. (Reflectance shall be low.)

A differential impedance that falls within the template shown on the following page is recommended.

• Attenuation shall be low and regular.

For the CXB1454R (built-in equalizer)

Attenuation of 15 dB (conforming to root f attenuation) @ 1 GHz or less is recommended.

See the following page.

For the CXB1456R (no equalizer)

Attenuation of 6 dB @ 1 GHz or less is recommended.

• Differential signal POS/NEG skew shall be small.

12% or less during the time for one bit is recommended.

160 ps @ VGA, 100 ps @ SVGA, 60 ps @ XGA

• EMI characteristics shall be excellent.

The following measures are effective for satisfying these requirements.

• Use a low attenuation, low skew differential cable with excellent impedance accuracy.

A cable with a two-core coaxial (shielded twisted pair) structure is recommended.

• Use low reflectance connectors.

• Take care for the connector pin assignment.

Select pins so that there is no interference with other signals and so that the positive and negative signal wiring are the same length on the board.

• Use a cable with a double shielded structure.

Recommended Transmission Path : Differential impedance template

Recommended Transmission Path : Attennation Characteristics

1.95Gbps SDATAP output waveform

100mV/div 100ps/div

SFCLK jitter tolerance: Example of power spectrum which can be used for transmission

Package Outline Unit: mm

48PIN LQFP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	LQFP-48P-L01
EIAJ CODE	LQFP048-P-0707
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER/PALLADIUM PLATING
LEAD MATERIAL	42/COPPER ALLOY
PACKAGE MASS	0.2g

NOTE : PALLADIUM PLATING This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).