

CXD2302Q

8-bit 50MSPS Video A/D Converter with Clamp Function

Description

The CXD2302Q is an 8-bit CMOS A/D converter for video with synchronizing clamp function. The adoption of 2 step-parallel method achieves low power consumption and a maximum conversion rate of 50MSPS.

Features

- Resolution: 8 bit ± 1/2LSB (DL)
- Maximum sampling frequency: 50MSPS
- Low power consumption: 125mW (at 50MSPS typ.) (reference current excluded)
- Synchronizing clamp function
- Clamp ON/OFF function
- Reference voltage self-bias circuit
- Input CMOS/TTL compatible
- 3-state TTL compatible output
- Single 5V power supply or dual 5V/3.3V power supply
- Low input capacitance: 15pF
- Reference impedance: 370Ω (typ.)

Applications

Wide range of applications that require high-speed A/D conversion such as TV and VCR.

Structure

Silicon gate CMOS IC

 Supply voltage 	Vdd	7	V
Reference voltage	Vrt,VrbVdd +	0.5 to Vss -	- 0.5V

- Input voltage Vin VDD + 0.5 to Vss - 0.5V (Analog)
- Input voltage VDD + 0.5 to Vss - 0.5V Vı (Digital)
- Output voltage VDD + 0.5 to Vss - 0.5V Vo (Digital)
- Storage temperature
 - °C Tstg -55 to +150

Recommended Operating Conditions

 Supply voltage 	AVdd,	AVss 4.75 to 5.25	V
	DVdd,	DVss 3.0 to 5.5	V
	DVs	s – AVss 0 to 100	mV
Reference input v	oltage		
	Vrb	0 and above	V
	Vrt	2.7 and below	V
 Analog input 	Vin	1.7Vp-p above	
Clock pulse width			
_	_		

TPW1, TPW0 9ns (min) to 1.1µs (max)

Operating ambient temperature

-40 to +85 °C Topr

Block Diagram

Pin Description

Pin No.	Symbol	Equivalent circuit	Description
1 to 8	Do to D7	DVDD Di Di DVSS	Do (LSB) to D7 (MSB) output
9	TEST	DVDD Image: Second state st	Leave open for normal use.
10	DVdd		Digital power supply +5V or +3.3V
11	TEST		Leave open for normal use. Pull-up resistor is built in.
15	CLP		Input the clamp pulse. Clamps the signal voltage during Low interval. Pull-up resistor is built in.
29	CLE	29 AVss	The clamp function is enabled when $\overline{\text{CLE}}$ = Low. The clamp function is set to off and the converter functions as a normal A/D converter when $\overline{\text{CLE}}$ = High. Pull-up resistor is built in.
12	CLK	AVDD (12 AVSS	Clock input. Set to Low level when no clock is input.
13, 14, 32	NC		
16, 19, 20	AVdd		Analog power supply +5V

Pin No.	Symbol	Equivalent circuit	Description
17	VRTS		Generates approximately +2.5V when shorted with AVDD.
18	VRT	$\begin{array}{c c} & & & & & & \\ \hline 17 & & & & & \\ \hline 18 & & & & \\ \hline 18 & & & & \\ \hline RT & & & & \\ Rref & & & \\ \hline Rref & & & \\ \hline \end{array}$	Reference voltage (top)
24	VRB		Reference voltage (bottom)
25	VRBS	AVss	Generates approximately +0.6V when shorted with AVss.
21	Vin	AVDD Q Q AVDD Q Q AVDD Q AVDD AVD	Analog input
22, 23	AVss		Analog ground
26	VREF		Clamp reference voltage input. Clamps so that the reference voltage and the input signal during clamp interval are equal.
27	ССР	AVDD Q Q AVSS	Integrates the clamp control voltage. The relationship between the changes in CCP voltage and in VIN voltage is positive phase.
28, 31	DVss		Digital ground
30	ŌĒ	AVDD 30 AVDD C AVSS	Data is output when \overline{OE} = Low. Pins D ₀ to D ₇ are <u>at high</u> impedance when \overline{OE} = High. Pull-down resistor is built in.

Digital output

The following table shows the relationship between analog input voltage and digital output code.

Input signal voltage	Step	Digital output code MSB LSB
Vrt	0	1 1 1 1 1 1 1 1
:	:	:
:	127	10000000
:	128	01111111
:	:	:
Vrb	255	0 0 0 0 0 0 0 0

Timing Chart I

Electrical Characteristics

Analog characteristics

(Fc = 50MHz, AVDD = 5V, DVDD = 3 to 5.5V, VRB = 0.5V, VRT = 2.5V, Ta = 25°C)

Item	Symbol	Conditi	ons	Min.	Тур.	Max.	Unit
Max. conversion rate	Fc max.		$AV_{DD} = 4.75 \text{ to } 5.25V$ Ta = -40 to +85°C,		65		MSPS
Min. conversion rate	Fc min.	VIN = 0.5 to 2.5V fIN = 1kHz triangu	ular wave			0.5	
Analog input band width	BW	Envelope	–1dB		60		MHz
		Rin = 33Ω	–3dB		100		
Differential non-linearity error	ED	End point			±0.3	±0.5	LSB
Integral non-linearity error	EL				+0.7	±1.5	
Offset voltage ^{*1}	Еот	Potential differer	ice to VRT	-70	-50	-30	mV
Onset voltage	Еов	Potential differer	ice to VRB	20	40	60	1110
Differential gain error	DG	NTSC 40 IRE mo	od ramp		3		%
Differential phase error	DP	Fc =14.3MSPS			1.5		deg
Sampling delay	tsd				0		ns
Clamp offset voltage*2	Eoc	VIN = DC CIN = 10µF tpcw = 2.75µs	Vref = 0.5V	0	20	40	mV
	200	Fc = 14.3MHz Fclp = 15.75kHz	Vref = 2.5V	0	20	40	
		FIN = 100kHz			45		
		FIN = 500kHz			44		
Signal-to-noise ratio	SNR	FIN = 1MHz			44		dB
		FIN = 3MHz			43		
		FIN = 10MHz			38		
		FIN = 25MHz			32		
		FIN = 100kHz			51		
		FIN = 500kHz			46		
Spurious free dynamic	FSDR	FIN = 1MHz			49		dB
range	rouk	FIN = 3MHz		46			
		FIN = 10MHz		45			
		FIN = 25MHz			45		

*1 The offset voltage EOB is a potential difference between VRB and a point of position where the voltage drops equivalent to 1/2 LSB of the voltage when the output data changes from "00000000" to "00000001". EOT is a potential difference between VRT and a potential of point where the voltage rises equivalent to 1/2LSB of the voltage when the output data changes from "11111111" to "11111110".

*2 Clamp offset voltage varies individually. When using with R, G, B 3 channels, color sliding may be generated.

lte	m	Symbol	Condi	tions	Min.	Тур.	Max.	Unit
		IAD + IDD	NTSC ramp	DVDD = 5V		25	36	
Supply current	Analog	lad	wave input			23	33	mA
current	Digital	Idd	CLE = 0V	$\frac{\text{DVDD}}{\text{CLE}} = 0 \text{V}$		2	3	
Reference cu	rrent	IREF			4.1	5.4	7.7	mA
Reference res (Vrt – Vrb)	sistance	Rref			260	370	480	Ω
Self-bias volta	20	Vrb	Shorts VRTS and	AVDD	0.52	0.56	0.60	V
	ige	Vrt – Vrb	Shorts VRBS and	d AVss	1.80	1.92	2.04	v
				Fc = 50MHz		13		
Analog input r	esistance	RIN	VIN	Fc = 35MHz		16		kΩ
				Fc = 20MHz		30		
		CAI1	VIN, VIN = 1.5V	/ + 0.07Vrms		15		
Input capacita	ince	CAI2	VRTS, VRT, VRE			11	pF	
		CDIN	TEST, CLK, CL	TEST, CLK, CLP, CLE, OE				11
	tanaa	Сао	ССР				11	
Output capaci	lance	Сро	D0 to D7, TEST	-			11	pF
Digital input v	oltage	Viн	AVDD = 4.75 to 5 DVDD = 3 to 5.5		2.2			V
2.9.00	enage	VIL	Ta = -40 to +85				0.8	•
				CLK	-240		240	
Digital input c	urrent	Iн I∟	Vi = 0V to AV _{DD} Ta = -40 to +85°C	TEST, CLP, CLE	-240		40	μA
				ŌĒ	-40		240	
		Іон	$\overline{OE} = 0V$ DVpd = 5V	VOH=DVDD-0.8V			-2	٣A
		Iol	Ta = -40 to $+85^{\circ}$ C	Vol = 0.4V	4			mA
Digital output	ourropt	Іон	$\overline{OE} = 0V$ $DV_{DD} = 3.3V$	VOH = DVDD - 0.8V			-1.2	mA
	Current	Iol	Ta = -40 to +85°C	VOL = 0.4V	2.4			
		Іоzн	$\overline{OE} = 3V$ DVDD = 3 to 5.5V	Voh=DVdd	-40		40	μA
		Iozl	Ta = -40 to $+85^{\circ}$ C	Vol = 0V	-40		40	μΛ

DC characteristics $(Fc = 50MHz, AVDD = 5V, DVDD = 5V \text{ or } 3.3V, VRB = 0.5V, VRT = 2.5V, Ta = 25^{\circ}C)$

Note) The voltage of up to $(AV_{DD} + 0.5V)$ can be input when $DV_{DD} = 3.3V$. But the output pin voltage is less than the DV_{DD} voltage. When the digital output is in the high impedance mode, the IC may be damaged by applying the voltage which is more than the $(DV_{DD} + 0.5V)$ voltage to the digital output.

Timing

-								
Item	Symbol	Conditi	ons	Min.	Тур.	Max.	Unit	
	tр∟н		DVpp = 5V	5.5	9.5	12.0		
Output data delay	tрн∟	<u>C∟</u> = 15pF	0,000 - 0,0	5.5	8.5	12.0	ns	
	tр∟н	OE = 0V	DVDD = 3.3V	4.3	11.8	16.3	115	
	tрн∟		DVDD = 3.3V	4.3	7.6	10.5		
	tрzн		DVdd = 5V	DVDD = 5V 2.8	25	4.5	8.0	
Tri-state	t pzL	R∟= 1kΩ C∟= 15pF			2.5	6.0	0.0	ns
output enable time	tрzн	$\overline{OE} = 3V \rightarrow 0V$	DVdd = 3.3V	DVdd = 3.3V	3.0	7.0	9.0	115
	t pzL				3.0	5.0	9.0	
Tri-state	tрнz tp∟z	R∟ = 1kΩ C∟ = 15pF	DVdd = 5V	3.5	5.5	7.5	ns	
output disable time	tрнz tp∟z	$\overline{OE} = 0V \rightarrow 3V$	DVDD = 3.3V	2.5	5.5	8.0	115	
Clamp pulse width*	t CPW	Fc = 14.3MHz, C for NTSC wave	Cin = 10µF	1.75	2.75	3.75	μs	

(Fc = 50MHz, AVDD = 5V, DVDD = 5V or 3.3V, VRB = 0.5V, VRT = 2.5V, Ta = 25°C)

* The clamp pulse width is for NTSC as an example. Adjust the rate to the clamp pulse cycle (1/15.75kHz for NTSC) for other processing systems to equal the values for NTSC.

Electrical Characteristics Measurement Circuit

Output data delay measurement circuit

Tri-state output measurement circuit

Note) CL includes capacitance of probes.

Q

Vdd

Differential gain error test circuit **Differential phase error**

Digital output current test circuit

Timing Chart II

Operation (See Block Diagram and Timing Chart II)

 The CXD2302Q is a 2-step parallel system A/D converter featuring a 4-bit upper comparator block and 2 lower comparator blocks of 4-bit each. The reference voltage that is equal to the voltage between VRT – VRB/16 is constantly applied to the upper 4-bit comparator block. Voltage that corresponded to the upper data is fed through the reference supply to the lower 4-bit comparator block. VRTS and VRBS pins serve for the self generation of VRT (Reference voltage top) and VRB (Reference voltage bottom), and they are also used as the sence pins as shown in the Application Circuit examples I-4 and I-5.

- This IC uses an offset cancel type comparator which operates synchronously with an external clock. It features the following operating modes which are respectively indicated on the timing chart II with S, H, C symbols. That is input sampling (auto zero) mode, input hold mode and comparison mode.
- 3. The operation of respective parts is as indicated in the Timing Chart II. For instance input voltage Vi (1) is sampled with the falling edge of the external clock (1) by means of the upper comparator block and the lower comparator A block.

The upper comparator block finalizes comparison data MD (1) with the rising edge of the external clock (2). Simultaneously the reference supply generates the lower reference voltage RV (1) that corresponded to the upper results. The lower comparator A block finalizes comparison data LD (1) with the rising edge of the external clock (3). MD (1) and LD (1) are combined and output as Out (1) with the rising edge of the external clock (4). Accordingly there is a 2.5 clock delay from the analog input sampling point to the digital data output.

Operation Notes

1. VDD, VSS

To reduce noise effects, separate the analog and digital systems close to the device. For both the digital and analog VDD pins, use a ceramic capacitor of about 0.1μ F set as close as possible to the pin to bypass to the respective GND's.

2. Analog input

Compared with the flash type A/D converter, the input capacitance of the analog input is rather small. However it is necessary to conduct the drive with an amplifier featuring sufficient band and drive capability. When driving with an amplifier of low output impedance, parasitic oscillation may occur. That may be prevented by insetting a resistance of about 33Ω in series between the amplifier output and A/D input. When the VIN signal of pin No. 21 is monitored, the kickback noise of clock is. However, this has no effect on the characteristics of A/D conversion.

3. Clock input

The clock line wiring should be as short as possible also, to avoid any interference with other signals, separate it from other circuits.

4. Reference input

Voltage VRT to VRB is compatible with the dynamic range of the analog input. Bypassing VRT and VRB pins to GND, by means of a capacitor about 0.1μ F, stable characteristics are obtained. By shorting VDD and VRTS, VSS and VRBS respectively, the self-bias function that generates VRT=about 2.5V and VRB=about 0.6V, is activated.

5. Timing

Analog input is sampled with the falling edge of CLK and output as digital data synchronized with a delay of 2.5 clocks and with the following rising edge. The delay from the clock rising edge to the data output is about 9ns (DVDD = 5V).

6. OE pin

Pins 1 to 8 (D₀ to D₇) are in the output mode by leaving \overline{OE} open or connecting it to DVss, and they are in the high impedance mode by connecting it to DV_{DD}.

Application Circuit

I. Single +5V Power Supply

I-2. Digital clamp (self-bias used)

I-3. When clamp is not used (self-bias used)

I-4. When clamp is used (self-bias not used)

I-5. When clamp is not used (self-bias not used)

II. Dual +5V/+3.3V Power Supply II-1. When clamp is used (self-bias used)

Example of Representative Characteristics

Sampling frequency vs. Supply current

Ambient temperature vs. Maximum operating frequency

Ambient temperature vs. Sampling delay

Input frequency vs. Supply current

Supply voltage vs. Maximum operating frequency

Maximum operating rate [MSPS]

8-bit 50MSPS ADC and DAC Evaluation Board

Evaluation boards are available for the high speed, low power consumption CMOS converters CXD2302Q (8-bit 50MHz A/D) and CXD1171M (8-bit 40MHz D/A).

The evaluation boards are composed of a main board, CXD2302Q sub board and CXD1171M sub board. The each board is connected with sockets.

An input interface, clock buffer and latches are mounted on the main board. The CXD2302Q and CXD1171M are mounted on each of the sub boards. Those ICs are mounted according to recommended print patterns designed to provide maximum performance to the A/D and D/A converters.

Block Diagram

Characteristics

- Resolution
- Maximum conversion rate 50MHz
- Digital input level
 CMOS level
- Supply voltage

±5.0V (Single +5V power supply possible at self bias use)

Supply voltage

Item	Min.	Тур.	Max.	Unit
+5V -5V			185 20	mA

8bit

Clock input

CMOS compatible Pulse width Tcw1 10ns (min) Tcw0 10ns (min)

Analog Output (CXD1171M)

(R∟ > 10kΩ)

Item	Min.	Тур.	Max.	Unit
Analog output	1.8	2.0	2.1	V

Output Format (CXD2302Q)

The table shows the output format of AD Converter.

Analog input voltage	Step	Digital output code MSB LSB					SB		
Vrt	0	1	1	1	1	1	1	1	1
:	:					:			
:	127	1	0	0	0	0	0	0	0
:	128	0	1	1	1	1	1	1	1
:	:					:			
Vrb	255	0	0	0	0	0	0	0	0

Timing Chart

Item	Symbol	Min.	Тур.	Max.	Unit
Clock High time	TPW1	10			ns
Clock Low time	TPW0	10			ns
Clock Delay	Tdc			24	ns
Data delay AD	tpd (AD)		9		ns
Data delay (latch)	tod			17	ns
Settling time	ts	5			ns
Hold time	th	10			ns
Data delay DA	t PD (DA)		10		ns

CMOS ADC/DAC Peripheral Circuit Board (Sub Board)

List of Parts

	1	tranaiatar		
resistance	1	transistor	2002705	
R1	100K	Q1	2SC2785	
R2	75Ω	Q2	2SC2785	
R3	75Ω	Q3	2SC2785	
R4	510Ω			
R5	510Ω	IC		
R6	510Ω	IC1	74S174	
R7	R = 200	IC2	74S174	
R8	18R ≈ 3.3K	IC3	74S04	
R9	75Ω			
R10	75Ω	oscillator		
VR1	2K	OSC		
VR2	2K			
VR3	20K	others		
VR4	20K	connector	BNC071	
VR5	20K	SW	AT1D2M3	
capacitance				
C1	470µF/6.3V (chemical)			
C2	10µF/16V (chemical)			
C3	0.01µF			
C4	0.01µF			
C5	0.1µF			
C6	0.1µF			
C7	0.1µF			
C8	0.1µF			
	'			

 C8
 0.1μF

 C9
 0.1μF

 C10
 0.1μF

 C11
 47μF/10V (chemical)

 C12
 47μF/10V (chemical)

 C13
 47μF/10V (chemical)

 C14
 0.1μF

Adjustment

1. Vref adjustment (VR1, VR2)

Adjustment of A/D converter reference voltage. VRB is adjusted through VR1 and VRT through VR2. When self bias is used, there is no need for adjustment. Reference voltage is set through self bias delivery.

- Setting of clamp reference voltage (VR3) Clamp reference voltage is set.
- DAC output full scale adjustment (VR4)
 Full scale voltage of D/A converter output is adjusted at the PCB shipment, the full scale voltage is adjusted to approx. 2V.
- Sync (clamp) pulse interface (VR5)
 This adjustment enables interface with the signal generator and others at the PCB shipment, adjustment is performed to obtain a threshold of approx. 2.5V to an H sync of 0 to 5V.

5. OE, SEL, Sync, BLK, CLE, Sync INT

The following pins are set on the main board: \overline{OE} , Sync, \overline{CLE} , Sync INT (CXD2302Q), BLK (CXD1171M) and SEL (not used). For the pins function, refer to the Pin Description. The difference between Sync pin and Sync INT pin is that a pulse above 3.5Vp-p should be input to Sync INT pin. The pulse threshold is set through VR5. For input through Sync pin, pulse is input at TTL or CMOS level. In this case cut off the junction line between Sync and Sync INT pin.

At the PCB shipment the main board pins are set as follows.

- OE : Low (A/D output ON)
- SEL : Low
- Sync : Line junction Sync INT pin
- CLE : Low (Clamp function ON)
- BLK : Low (Blanking OFF)
- 6. Clamp pulse input method

Directly input the clamp pulse as shown in Application Circuit example I-1. As SW1 is set to direct input at the PCB shipment, use it in this position.

Points on the PCB Pattern Layout

- 1. Set the layout not to have Digital current flow into Analog GND (For 1, see p.24 "Component side diagram".).
- The C₂ and C₃ capacitors for the CXD2302Q sub board serve the important role of bringing out ICs full performance.
 Connect over 0.1µF (ceramic) capacitors with good high frequency characteristics as close to the IC as possible.
- 3. Analog GND (AVss) and Digital GND (DVss) are on a common voltage supply source. Keeping ADC's DVss (For 2, see p.24 "Component side diagram".) as close to the voltage supply source as possible will provide better characteristics. That is, a layout where ADC is close to the voltage supply source, is recommended.
- 4. ADC samples analog signals at the clock falling edge. Accordingly it is important that clocks supplied to ADC do not have any jitter.
- 5. The PCB layout shows ADC and DAC's Analog GND independently from the voltage supply source. The layout aims at providing an independent evaluation of ADC and DAC, as much as possible. On the actual board, common use will not cause any problems.

Notes on Operation

1. Reference voltage

Shorting AV_{DD} and V_{RTS}, AV_{SS} and V_{RBS} will activate the self-bias function that generates V_{RT} = about 2.6V and V_{RB}=about 0.5V. On the PCB, either self bias or the external reference voltage can be selected depending on the junction method of the jumper line. At shipment from the factory, reference voltage is provided in self bias. Also, to provide external reference voltage, adjust the dynamic range (V_{RT} – V_{RB}) to above 1.8Vp-p.

2. Clock input

There are 2 modes for the PCB clock input

- 1) Provided from the external signal generator. (External clock)
- 2) Using the crystal oscillator (built-in clock driver). (Internal clock)

The 2 modes are selected using the switch on the PCB.

- 3. The 2 Latch ICs (74S174) are not absolutely necessary for the evaluation of ADC and DAC. That is, operation will still be normal if ADC output data is directly input to DAC input. However, as ADC output data is hardly ever D/A converted without executing Digital signal processing, it was mounted to indicate an example layout of Digital signal processing IC. Use the Latch IC output when the ADC output data is used.
- 4. When clamp is not used

Turning $\overline{\text{CLE}}$ to H will set OFF the clamp function. In this case, the DC element is cut off by means of C₂ on the main board and DC voltage on the ADC side of C₂ turns to about (V_{RT}+V_{RB})/2. To transfer DC elements of input signals, short C₂. At that time, it is necessary to bias input signals, but keeping R₂ open, Q₃ can also be used as buffer. Use the open space for the bias circuit.

5. Clamp pulse latch

On the evaluation board, the clamp pulse is latched with ADC sampling CLK and then input to CLP pin. However, the latch is incorporated in CLP pin of the CXD2302Q, so that the external latch is not required.

6. Peripheral through hole

There is a group of through holes on the Analog input, output and Logic. There are to be used when mounting additional circuits to the PCB. Use when necessary.

The connector hole on DAC part is used to mount the test chassis mount jack.

Silk Side

Component Side

Soldering Side (Diagram seen from the component side)

Package Outline Unit: mm

32PIN QFP (PLASTIC)

SONY CODE	QFP-32P-L01
EIAJ CODE	*QFP032-P-0707-A
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN	
LEAD TREATMENT	SOLDER PLATING	
LEAD MATERIAL	42 ALLOY	
PACKAGE WEIGHT	0.2g	