

CXD2306Q

10-bit 80MSPS 1ch D/A Converter

Description

The CXD2306Q is a 1-ch 10-bit 80MSPS D/A converter for fine monitor and video, and is ideal for high definition TVs and high resolution displays.

Features

- 10-bit resolution
- Maximum conversion rate
 80MSPS
- Differential linearity error ±0.5LSB
- Low power consumption 150mW (When 80MSPS 200Ω load, 2Vp-p is output)
- Single 5V power supply
- Built-in independent constant-voltage source

Recommended Operating Conditions

 Supply voltage 	AVdd, AVss	5.0 ± 0.25	V
	DVDD, DVSS	5.0 ± 0.25	V
Reference input vo	oltage		
	Vref	0.5 to 2.0	V
 Clock pulse width 	tpw₁	6.25 (min.)	ns
	tpw o	6.25 (min.)	ns
• Operating tempera	iture		
	topr	-20 to +75	°C

Structure

Silicon gate CMOS IC

Absolute Maximum Ratings (Ta = 25°C)

		υ ()	
 Supply voltage 	Vdd	7	V
 Input voltage 	Vin	Vss - 0.5 to Vod +	0.5 V
 Output voltage 	Ιουτ	0 to 15	mΑ
 Storage temperat 	ture		
	Tstg	-55 to +150	°C

Block Diagram

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Configuration

Pin Description and Equivalent Circuit

Pin No.	Symbol	Equivalent circuit	Description
30 to 32 1 to 7	D0 to D9	30 to 7	Digital input
10	BLK		Blanking pin. No signal (0V output) at high and output state at low.
14	VB	DVDD DVD	Connect a capacitor of approximately 0.1µF.
9	CLK		Clock pin
15, 27	DVss		Digital GND
25	AVss		Analog GND
17	Iref		Connect resistance "16R" which is 16 times output resistance "R".
19	Vref	AVDD (1) (1) AVSS (2) (1) (1) (1) (1) (1) (1) (1) (1	Sets output full scale value.
22	VG		Connect a capacitor of approximately 0.1µF.

Pin No.	Symbol	Equivalent circuit	Description
20, 21	AVdd		Analog Vod
24	Ю	AVDD O Q Q AVSS O AVSS O	Current output pin. Output can be retrieved by connecting resistance. The standard is 200Ω .
23	ĪŌ	AVDD O Q Q AVSS O	Inverted current output pin. Connect to GND normally.
13, 28	DVdd		Digital VDD
11	CE	11 DVDD DVss	Chip enable pin. No signal (0V output) at high makes power consumption minimum.
18	Sref	AVDD o (18) AVss o AVss o AVss	Independent constant-voltage source output pin using band gap reference. Stable voltage independent of the fluctuation for supply voltage can be get by connecting to VREF. See Application Circuit 2 for details

	Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Resolution		n			10		bit
Maximum con	version rate	fмах		80			MSPS
Linearity error		EL		-2.0		2.0	LSB
Differential line	earity error	ED		-0.5		0.5	LSB
Output full-sca	ale voltage	Vfs		1.8	1.92	2.0	V
Output full-sca	ale current	IFS		9.0	9.6	10	mA
Output off-set	voltage	Vos				1	mV
Supply curren	t	ldd				30	mA
Digital Input	High level	Ін				5	μA
current	Low level	lı∟		-5			μA
Digital Input	High level	Vін		2.15			V
voltage	Low level	VIL				0.85	V
Accuracy gua voltage range		Voc		1.8	1.92	2.0	V
Setup time		ts		5.0			ns
Hold time		th		1.0			ns
Propagation d	elay time	t PD			10		ns
Glitch energy		GE	Rout = 100Ω,1Vp-p		50		pV-s
Differential ga	in	DG			2.5		%
Differential ph	ase	DP			1.3		deg
SREF output vo	oltage	SREF	Ta = 25°C	1.0		1.3	V

Electrical Characteristics

(fclk = 80MHz, Vdd = 5V, R = 200 Ω , Vref = 2.0V, 16R = 3.3k Ω , Ta = 25°C)

Maximum Conversion Rate Test Circuit

DC Characteristics Test Circuit

Setup Hold Time and Glitch Energy Test Circuit

Description of Operation Timing Chart

I/O Correspondence Table

(When 2.00V output full-scale voltage)

Input code	Output voltage
MSB LSB	
1 1 1 1 1 1 1 1 1 1	2.0V
	1.0\/
1000000000	1.0V
00000000000	0V

Application Circuit 1

- When 5.0V supply voltage (DVDD and AVDD)
- Digital input from Pins 30 to 32 and Pins 1 to 7
- Pin 18 is left open when using normally
- R1 = 200Ω
- $R2 = 3.3k\Omega$ (resistance 16 times R1)
- R3 = $3.0k\Omega$
- R4 = 2.0kΩ
- $C = 0.1 \mu F$

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Application Circuit 2

• When 5.0V supply voltage (DVDD and AVDD)

- Digital input from Pins 30 to 32 and Pins 1 to 7
- $R1 = 200\Omega$ $R2 = 2.0k\Omega$
- C = 0.1µF

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Fig. 1. Output fullscale voltage vs. reference voltage

Fig. 3. Output fullscale voltage vs. Ta

Fig. 5. SREF vs. Ta

Fig. 4. Output frequency vs. current consumption

Standard masurement conditions and description

- VDD = 5.0V• VREF = 2.0V• R1 = 200Ω R2 = $3.3k\Omega$

- Ta = 25°C
- Input data in Fig. 4 = all 0, rectangular wave of all 1, clock freq. = 80MHz.

Notes on Operation

• Selecting the Output Resistance

CXD2306Q is a current output type D/A converter. To create the output voltage, connect the resistor to the current output terminal.

Specifications: Output full-scale voltage VFs max = 2.0 [V]

Output full-scale current IFs max = 10 [mA]

Calculate the output resistance from VFS = IFS \times R. Connect a resistance sixteen times the output resistance to the reference current terminal IREF. In some cases, as this value may not exist, a similar value can be used instead.

Note that the VFs will be the following.

 $VFS = VREF \times 16 R/R'$

R is the resistor to be connected to the IO and R' is the resistor to be connected to the IREF. Power consumption can be reduced by increasing the resistance, but this will on the contrary increase the gritty energy and data settling time. Set the best values according to the purpose of use.

Correlation between Data and Clock

For CXD2306Q to display the desired performance as a D/A converter, the data transmitted from outside and the clock must be synchronized properly. Adjust the setup time (ts) and hold time (th) as specified in "Electrical Characteristics".

• Vdd, Vss

Separate the analog and digital signals around the device to reduce noise effects. Bypass the V_{DD} terminal to each GND with a 0.1μ F ceramics capacitor as near as possible to the terminal for both the digital and analog signals.

Latch up

The AVDD and DVDD terminals must be able to share the same power supply of the board. This is to prevent latch up caused by potential difference between the two terminals when the power is turned on.

• Sref

The SREF is an independent regulated current source. By connecting it to the VREF, stable output amplitudes that do not depend on fluctuations in the power supply can be obtained.

In this case, as $V_{FS} = S_{REF} \times 16R/R'$, set the VFs according to R'.

Package Outline Unit: mm

32PIN QFP (PLASTIC)

SONY CODE	QFP-32P-L01
EIAJ CODE	QFP032-P-0707
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE MASS	0.2g

(8.0)

0.50